
Theoretical Limitations of Self-Attention in
Neural Sequence Models

Michael Hahn
Stanford University

ACL 2020

What is their computational power?

Transformers are at the heart of the state-of-the-art in NLP.

Understanding this might help us
● Design better models
● Learn something about the nature of language

What is the computational power of transformers?

Can they model hierarchical structure?

Thought to be essential to modeling syntax and meaning of natural language.

the child hit the ball

What is the computational power of transformers?

I’ll investigate this question theoretically.

Can transformers theoretically model hierarchical structure with unbounded
recursion?

1. Can they correctly close brackets?
2. Can they evaluate iterated negation?

PARITY

Set of bit strings with an even number of 1s

● Extremely simple regular language,
recognized by automaton with two states

● Prerequisite to evaluating Boolean formulas

● RNNs, LSTMs, GRUs,... can do this (at least in
theory)

● If transformers can’t model this, they can’t
model any non-quasi-aperiodic language

11
101
0000101011

1
01
000001011

DYCK2

● Correctly bracketed words over (, [,],)

● All context-free languages arise from some
DYCKn through intersection with regular
language + letter substitution (Chomsky and
Schutzenberger, 1963)

● LSTMs are capable of solving this perfectly, at
least in theory, using infinite precision

()
([])()
[[()]()]

(]
((((
(()]

What is the computational power of transformers?

I’ll investigate this question theoretically.

Can transformers theoretically model hierarchical structure with unbounded
recursion?

1. Can they correctly close brackets? -- Dyck2

2. Can they evaluate iterated negation? -- Parity

Can a transformer correctly classify inputs as (not) belonging to these languages?

X1 X2 X3 X4 X5Input

e.g., word
embeddings

Transformer Architecture (Vaswani et al., 2017)

P1 P2 P3 P4 P5

X1 X2 X3 X4 X5Input

Positional
Embeddings

e.g., word
embeddings input-independent

embedding for each
integer n > 0

Transformer Architecture (Vaswani et al., 2017)

P1 P2 P3 P4 P5

X1 X2 X3 X4 X5Input

Positional
Embeddings

e.g., Addition or Concatenation

Transformer Architecture (Vaswani et al., 2017)

P1 P2 P3 P4 P5

X1 X2 X3 X4 X5Input

Positional
Embeddings

Attention Head

Transformer Architecture (Vaswani et al., 2017)

P1 P2 P3 P4 P5

X1 X2 X3 X4 X5Input

Positional
Embeddings

Attention Head

Attention Weights

Transformer Architecture (Vaswani et al., 2017)

P1 P2 P3 P4 P5

X1 X2 X3 X4 X5Input

Positional
Embeddings

Attention Head

Soft Attention

Transformer Architecture (Vaswani et al., 2017)

P1 P2 P3 P4 P5

X1 X2 X3 X4 X5Input

Positional
Embeddings

Attention Head

Hard Attention

Transformer Architecture (Vaswani et al., 2017)

P1 P2 P3 P4 P5

X1 X2 X3 X4 X5Input

Positional
Embeddings

Transformer Architecture (Vaswani et al., 2017)

P1 P2 P3 P4 P5

X1 X2 X3 X4 X5Input

Positional
Embeddings

Layer 1

Transformer Architecture (Vaswani et al., 2017)

X1 X2 X3 X4 X5Input

Layer 1

Layer N

Layer 2

. . .

P1 P2 P3 P4 P5
Positional
Embeddings

Transformer Architecture (Vaswani et al., 2017)
Prediction

(e.g., next word)

P1 P2 P3 P4 P5

X1 X2 X3 X4 X5Input

Positional
Embeddings

Hard Attention

P1 P2 P3 P4 P5

X1 X2 X3 X4 X5Input

Positional
Embeddings

Soft Attention

P1 P2 P3 P4 P5

X1 X2 X3 X4 X5Input

Positional
Embeddings

Hard Attention

P1 P2 P3 P4 P5

X1 X2 X3 X4 X5Input

Positional
Embeddings

Soft Attention

● less easy to train from scratch (Shen et al 2018)

● But, heads in trained NLP models tend to
concentrate their attention on few positions
(Voita et al., 2019; Clark et al., 2019)

 ⇒ may be a reasonable theoretical model

● standard choice in practice
● easier to train with SGD

Part 1: Hard Attention

Proof Idea:

Assume we have a candidate transformer given.

We construct a pair of inputs that are classified the same, even though one is in

Parity and the other is not (same for Dyck2).

Method: We fix a few input bits to ‘distract’ the transformer, so that it ignores most
input bits.

X1 X2 X3 X4 X5Input

Layer 1

Layer N

Prediction

Layer 2

. . .

X1 X5Input X2 01

Layer 1

Layer N

Prediction

Layer 2

. . . Idea: Some input bits will be
ignored, since their attention
weights are always smaller
than those of the fixed bits.

X1 X5Input X2 0

Layer 1

Layer N

Prediction

Layer 2

. . . The entire
network ignores
this bit!

Consequence: It could not have
modeled PARITY, since every bit
matters for PARITY.
(Similar proof works for DYCK2)

1

X1 X2 X3 X4 X5Input

Layer 1

Layer N

Prediction

Layer 2

. . .

X1 X2 X3 X4 X5Input

Layer 1

Layer N

Prediction

Layer 2

. . .

11 0 1 0Input

Layer 1

Layer N

Prediction

Layer 2

. . .

For each input bit, imagine
the highest possible
attention value.

Input

Layer 1

Layer N

Prediction

Layer 2

. . .

By fixing one input, we can
make the head ignore all
remaining input bits.

X1 X2 X4 X51

Input

Layer 1

Layer N

Prediction

Layer 2

. . .

X1 X2 X4 X51

By fixing one input, we can
make the head ignore all
remaining input bits.

Input

Layer 1

Layer N

Prediction

Layer 2

. . .

Now let’s repeat this for
every Layer 1 head.

X1 X2 X4 X51

0Input

Layer 1

Layer N

Prediction

Layer 2

. . .

Now let’s repeat this for
every Layer 1 head.

X1 X4 X51

0Input

Layer 1

Layer N

Prediction

Layer 2

. . .

Now let’s repeat this for
every Layer 1 head.

X1 X4 X51

00Input 1 11

Layer 1

Layer N

Prediction

Layer 2

. . .

Problem: We might end up
fixing all inputs.

Input

Layer 1

Layer N

Prediction

Layer 2

. . .

Problem: We might end up
fixing all inputs.

Solution: Fix bits in such a
way that each head
ignores all but k input bits
(for some constant k)

X1 X51X2 0

Input

Layer 1

Layer N

Prediction

Layer 2

. . .

Problem: We might end up
fixing all inputs.

Solution: Fix bits in such a
way that each head
ignores all but k input bits
(for some constant k)

X1 X51X2 0

Input

Layer 1

Layer N

Prediction

Layer 2

. . .

Problem: We might end up
fixing all inputs.

Solution: Fix bits in such a
way that each head
ignores all but k input bits
(for some constant k)

X1 X51X2 0

Problem: We might end up
fixing all inputs.

Solution: Fix bits in such a
way that each head
ignores all but k input bits
(for some constant k).

Can guarantee that this
fixes only < 10% of bits.

Input

Layer 1

Layer N

Prediction

Layer 2

. . .

X1 X51X2 0

Input

Layer 1

Layer N

Prediction

Layer 2

. . .

X1 X2 X3 X4 X5

Set each input i.i.d. to

* with p=95%
0 with p=2.5%
1 with p=2.5%

Proof Idea

Input

Layer 1

Layer N

Prediction

Layer 2

. . .

1 * 0 * *

Set each input i.i.d. to

* with p=95%
0 with p=2.5%
1 with p=2.5%

Proof Idea

Input

Layer 1

Layer N

Prediction

Layer 2

. . .

What is Probability that
1) each head depends on only k

inputs, and
2) only < 10% of bits are fixed?

Enough to show that this is > 0!

Proof Idea

1 * 0 * *

Input

Layer 1

Layer N

Prediction

Layer 2

. . .

What is Probability that
1) each head depends on only k

inputs, and
2) only < 10% of bits are fixed?

Enough to show that this is > 0!

Show this by calculating for
each head and combining via
Lovasz Local Lemma.

Proof Idea

1 * 0 * *

Input

Layer N

Prediction

Layer 2

. . .

We can now fold Layer 1
into Layer 2….

X1 X51X2 0

Input

Layer N

Prediction

Layer 2

. . .

We can now fold Layer 1
into Layer 2….

X1 X51

...and repeat the
construction...

0 0

Input

Layer N

Prediction

We can now fold Layer 1
into Layer 2….

X1 X51

...and repeat the
construction…

...until only the final layer
remains!

00

Input

Layer N

Prediction

X1 X51

The prediction ignores bit X5!

Thus, the transformer could
never have modeled Parity (or

Dyck2).

00

Part 2: Soft Attention

Results as strong as for hard attention would settle outstanding problem in
computational complexity

→ probably very hard to attain with currently available methods!

Instead:

● Prove bounds on cross-entropy in prediction
● Focus on smooth activation functions as found in practice

0Input 1 11

Layer 1

Layer N

Layer 2

. . .

0Input 1 11

Layer 1

Layer N

Layer 2

. . .

Imagine we change one input symbol.
How much can this change the prediction?

0 1

Output1 Output2

Input

Layer 1

Layer N

Layer 2

. . .

Layer 1

Layer N

Layer 2

. . .

As input length n → ∞: |Output1-Output2| = O(1/n)

Output1 Output2

0 1 11 0Input 1 110 1

As input length n → ∞: |Output1-Output2| = O(1/n)

0 1 110 1 11

Output1
Output2

0 1

But the strings should receive opposite labels.

PARITY PARITY

As input length n → ∞: |Output1-Output2| = O(1/n)

Output1
Output2

But the strings should receive opposite labels.

For a continuous prediction function, cross-entropy goes to chance level as
n → ∞

PARITY PARITY

Similar argument for DYCK2.

0 1 110 1 11 0 1

Discussion

Transformers cannot model PARITY or DYCK2 as inputs get longer.

 ⇒ they cannot model wide subclasses of regular and context-free languages

Contrast with LSTMs, which can model these perfectly (at least when precision is

unbounded).

● Chomsky (1956): Language not regular, maybe not even context-free

● Montague (1972): Meaning described by logical formulas transduced
from context-free parse trees.

● Shieber (1985): Swiss German not even context-free

… while transformers cannot emulate stacks.

What does this mean for language and NLP?

the child hit the ball

● Natural language can be approximated well with a model far too weak for
the formal languages typically assumed in theoretical linguistics.

What does this mean for language and NLP?

● Natural language can be approximated well with a model far too weak for
the formal languages typically assumed in theoretical linguistics.

What does this mean for language and NLP?

● How to reconcile with success in NLP?

What does this mean for language and NLP?

● Natural language can be approximated well with a model that is far too weak for
the formal languages typically assumed in theoretical linguistics.

● How to reconcile with success in NLP?

○ Practical models circumvent asymptotic limitations by having many layers and
parameters?

What does this mean for language and NLP?

● Natural language can be approximated well with a model that is far too weak for
the formal languages typically assumed in theoretical linguistics.

● How to reconcile with success in NLP?

○ Practical models circumvent asymptotic limitations by having many layers and
parameters?

○ Transformers cannot fully understand language like humans do?

Low Perplexity != True Understanding?

What does this mean for language and NLP?

● Natural language can be approximated well with a model that is far too weak for
the formal languages typically assumed in theoretical linguistics.

● How to reconcile with success in NLP?

○ Practical models circumvent asymptotic limitations by having many layers and
parameters?

○ Transformers cannot fully understand language like humans do?

Low Perplexity != True Understanding?

○ Humans also have trouble doing these things accurately?

Understanding naturalistic input might not require fully solving these problems?

Thank you!

Conclusion

● Investigated computational power of transformers to model hierarchical
structure

● Focus on Parity and Dyck2

● Negative results for both hard and soft attention

Directions for Future Work

1. What statistical properties of language make transformers work well on
language? Can this give us new insights about the nature of language?

Directions for Future Work

1. What statistical properties of language make transformers work well on
language? Can this give us new insights about the nature of language?

2. When do transformers work better than LSTMs?

Directions for Future Work

1. What statistical properties of language make transformers work well on
language? Can this give us new insights about the nature of language?

2. When do transformers work better than LSTMs?

3. Link self-attention to psycholinguistic models that predict that humans
have trouble with recursion?

Directions for Future Work

1. What statistical properties of language make transformers work well on
language? Can this give us new insights about the nature of language?

2. When do transformers work better than LSTMs?

3. Link self-attention to psycholinguistic models that predict that humans
have trouble with recursion?

4. Can transformers help understand why humans can do some recursion
but struggle with center-embedding?

Questions

1. Can we characterize more exactly the formal languages that
transformers capture? E.g., which regular languages?

2. What theoretical properties explain why transformers work better than
LSTMs?

3. Link self-attention to psycholinguistic models that predict that humans
have trouble with recursion?

4. Can transformers help understand why humans can do some recursion
but struggle with center-embedding?

5. What do you think?

Discussion

Examples that hard-attention transformers can solve easily:

● 1* (also a two-state regular language)
● anbn (also a basic context-free language)

Difference from Parity and Dyck2: Fixing a few bits can easily force word to
be outside of language.

What is the computational power of transformers?

Tran et al (EMNLP 2018):

LSTMs appear to work better than
transformers at

● English agreement
● evaluating logical formulas

Similar result: Evans et al. (ICLR 2018)

LSTM

Transformer

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65

