Theoretical Limitations of Self-Attention in Neural Sequence Models

Michael Hahn

Stanford University

 ACL 2020The Stanford Natural Language Processing Group

Transformers are at the heart of the state-of-the-art in NLP.

What is their computational power?

Understanding this might help us

- Design better models
- Learn something about the nature of language

What is the computational power of transformers?

Can they model hierarchical structure?
Thought to be essential to modeling syntax and meaning of natural language.

the child hit the ball

What is the computational power of transformers?

I'll investigate this question theoretically.
Can transformers theoretically model hierarchical structure with unbounded recursion?

1. Can they correctly close brackets?
2. Can they evaluate iterated negation?

Parity

Set of bit strings with an even number of 1s

- Extremely simple regular language, recognized by automaton with two states
- Prerequisite to evaluating Boolean formulas
- RNNs, LSTMs, GRUs,... can do this (at least in theory)
- If transformers can't model this, they can't model any non-quasi-aperiodic language

DYCK_{2}

- Correctly bracketed words over (, [,],)
- All context-free languages arise from some Dyck $_{n}$ through intersection with regular language + letter substitution (Chomsky and Schutzenberger, 1963)

- LSTMs are capable of solving this perfectly, at least in theory, using infinite precision

What is the computational power of transformers?

I'll investigate this question theoretically.
Can transformers theoretically model hierarchical structure with unbounded recursion?

1. Can they correctly close brackets? -- Dyck ${ }_{2}$
2. Can they evaluate iterated negation? -- Parity

Can a transformer correctly classify inputs as (not) belonging to these languages?

Transformer Architecture (vaswani et al., 2017)

Transformer Architecture (vaswani et al., 2017)

Transformer Architecture (vaswani et al., 2017)

Transformer Architecture (vaswani et al., 2017)

Attention Head

Transformer Architecture (vaswani et al., 2017)

Attention Head

Transformer Architecture (vaswani et al., 2017)

Attention Head

Transformer Architecture (vaswani et al., 2017)

Attention Head

Hard Attention

Transformer Architecture (vaswani et al., 2017)

Transformer Architecture (vaswani et al., 2017)

Layer 2

Positional
Embeddings

$$
\begin{array}{|l|l|l|l|l|}
\hline P_{1} & P_{2} & P_{3} & P_{4} & P_{5} \\
\hline
\end{array}
$$

Hard Attention

Input
Positional
Embeddings

$\mathrm{P}_{1} \mathrm{P}_{2} \mathrm{P}_{3} \mathrm{P}_{4} \mathrm{P}_{5}$

Soft Attention

Positional
Embeddings

- standard choice in practice
- easier to train with SGD

Hard Attention

Input
Positional
Embeddings

- less easy to train from scratch (Shen et al 2018)
- But, heads in trained NLP models tend to concentrate their attention on few positions
(Voita et al., 2019; Clark et al., 2019)
\Rightarrow may be a reasonable theoretical model

Part 1: Hard Attention

Proof Idea:

Assume we have a candidate transformer given.

We construct a pair of inputs that are classified the same, even though one is in Parity and the other is not (same for Dyck ${ }_{2}$).

Method: We fix a few input bits to 'distract' the transformer, so that it ignores most input bits.

Prediction

Idea: Some input bits will be ignored, since their attention weights are always smaller than those of the fixed bits.

> Prediction

Layer N

Layer 2

Layer 1

Input

> Prediction

Layer N

Layer 2

Layer 1

Input

For each input bit, imagine the highest possible attention value.

Layer 2 \square

Layer 1

Input

Now let's repeat this for every Layer 1 head.

Now let's repeat this for every Layer 1 head.

Prediction

Layer N

Problem: We might end up fixing all inputs.

Solution: Fix bits in such a way that each head ignores all but k input bits (for some constant k)

Layer N
\square
\square

Problem: We might end up fixing all inputs.

Solution: Fix bits in such a way that each head ignores all but k input bits (for some constant k)

Layer N

- ! !

Problem: We might end up fixing all inputs.

Solution: Fix bits in such a way that each head ignores all but k input bits (for some constant k)

Layer N

- ! !

Problem: We might end up fixing all inputs.

Solution: Fix bits in such a way that each head ignores all but k input bits (for some constant k).

Can guarantee that this fixes only < 10\% of bits.

Proof Idea

Set each input i.i.d. to

* with $\mathrm{p}=95 \%$

0 with $\mathrm{p}=2.5 \%$
1 with $\mathrm{p}=2.5 \%$

Proof Idea

Set each input i.i.d. to

* with $\mathrm{p}=95 \%$

0 with $\mathrm{p}=2.5 \%$
1 with $\mathrm{p}=2.5 \%$

Proof Idea

Layer N

Layer 2

Layer 1
\square

Input
Enough to show that this is >0 !

Proof Idea

Layer N

Layer 2

Layer 1
\square

Input

What is Probability that

1) each head depends on only k inputs, and
2) only $<10 \%$ of bits are fixed?

Enough to show that this is >0 !

Show this by calculating for each head and combining via Lovasz Local Lemma.

Layer N

Input

We can now fold Layer 1 into Layer 2....
...and repeat the construction...
... until only the final layer remains!

Part 2: Soft Attention

Results as strong as for hard attention would settle outstanding problem in computational complexity
\rightarrow probably very hard to attain with currently available methods!

Instead:

- Prove bounds on cross-entropy in prediction
- Focus on smooth activation functions as found in practice

Imagine we change one input symbol.
How much can this change the prediction?

As input length $\mathrm{n} \rightarrow \infty$: \mid Output $_{1}$-Output $_{2} \mid=\mathrm{O}(1 / \mathrm{n})$

\in PARITY

As input length $\mathrm{n} \rightarrow \infty$: \mid Output $_{1}$-Output $_{2} \mid=\mathrm{O}(1 / \mathrm{n})$
But the strings should receive opposite labels.

As input length $\mathrm{n} \rightarrow \infty$: \mid Output $_{1}$-Output $_{2} \mid=\mathrm{O}(1 / \mathrm{n})$
But the strings should receive opposite labels.
For a continuous prediction function, cross-entropy goes to chance level as $\mathrm{n} \rightarrow \infty$

Similar argument for DYCK_{2}.

Discussion

Transformers cannot model Parity or Dyck ${ }_{2}$ as inputs get longer.
\Rightarrow they cannot model wide subclasses of regular and context-free languages Contrast with LSTMs, which can model these perfectly (at least when precision is unbounded).

What does this mean for language and NLP?

- Chomsky (1956): Language not regular, maybe not even context-free
- Montague (1972): Meaning described by logical formulas transduced from context-free parse trees.
- \quad Shieber (1985): Swiss German not even context-free
... while transformers cannot emulate stacks.

What does this mean for language and NLP?

- Natural language can be approximated well with a model far too weak for the formal languages typically assumed in theoretical linguistics.

What does this mean for language and NLP?

- Natural language can be approximated well with a model far too weak for the formal languages typically assumed in theoretical linguistics.
- How to reconcile with success in NLP?

What does this mean for language and NLP?

- Natural language can be approximated well with a model that is far too weak for the formal languages typically assumed in theoretical linguistics.
- How to reconcile with success in NLP?
- Practical models circumvent asymptotic limitations by having many layers and parameters?

What does this mean for language and NLP?

- Natural language can be approximated well with a model that is far too weak for the formal languages typically assumed in theoretical linguistics.
- How to reconcile with success in NLP?
- Practical models circumvent asymptotic limitations by having many layers and parameters?
- Transformers cannot fully understand language like humans do?

Low Perplexity != True Understanding?

What does this mean for language and NLP?

- Natural language can be approximated well with a model that is far too weak for the formal languages typically assumed in theoretical linguistics.
- How to reconcile with success in NLP?
- Practical models circumvent asymptotic limitations by having many layers and parameters?
- Transformers cannot fully understand language like humans do?

Low Perplexity != True Understanding?

- Humans also have trouble doing these things accurately?

Understanding naturalistic input might not require fully solving these problems?

Thank you!

Conclusion

- Investigated computational power of transformers to model hierarchical structure
- Focus on Parity and Dyck
- Negative results for both hard and soft attention

Directions for Future Work

1. What statistical properties of language make transformers work well on language? Can this give us new insights about the nature of language?

Directions for Future Work

1. What statistical properties of language make transformers work well on language? Can this give us new insights about the nature of language?
2. When do transformers work better than LSTMs?

Directions for Future Work

1. What statistical properties of language make transformers work well on language? Can this give us new insights about the nature of language?
2. When do transformers work better than LSTMs?
3. Link self-attention to psycholinguistic models that predict that humans have trouble with recursion?

Directions for Future Work

1. What statistical properties of language make transformers work well on language? Can this give us new insights about the nature of language?
2. When do transformers work better than LSTMs?
3. Link self-attention to psycholinguistic models that predict that humans have trouble with recursion?
4. Can transformers help understand why humans can do some recursion but struggle with center-embedding?

Questions

1. Can we characterize more exactly the formal languages that transformers capture? E.g., which regular languages?
2. What theoretical properties explain why transformers work better than LSTMs?
3. Link self-attention to psycholinguistic models that predict that humans have trouble with recursion?
4. Can transformers help understand why humans can do some recursion but struggle with center-embedding?
5. What do you think?

Discussion

Examples that hard-attention transformers can solve easily:

- 1* (also a two-state regular language)
- $a^{n} b^{n} \quad$ (also a basic context-free language)

Difference from Parity and Dyck $_{2}$: Fixing a few bits can easily force word to be outside of language.

What is the computational power of transformers?

Tran et al (EMNLP 2018):

LSTMs appear to work better than transformers at

- English agreement
- evaluating logical formulas

Similar result: Evans et al. (ICLR 2018)

The Importance of Being Recurrent for Modeling Hierarchical Structure

Ke Tran ${ }^{1} \quad$ Arianna Bisazza ${ }^{2} \quad$ Christof Monz
${ }^{1}$ Informatics Institute, University of Amsterdam
${ }^{2}$ Leiden Institute of Advanced Computer Science, Leiden University \{m.k.tran, c.monz\}@uva.nl a.bisazza@liacs.leidenuniv.nl

