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What is their computational power?

Transformers are at the heart of the state-of-the-art in NLP.

Understanding this might help us
● Design better models
● Learn something about the nature of language



What is the computational power of transformers?

Can they model hierarchical structure?

Thought to be essential to modeling syntax and meaning of natural language.

the child hit the ball



What is the computational power of transformers?

I’ll investigate this question theoretically.

Can transformers theoretically model hierarchical structure with unbounded 
recursion?

1. Can they correctly close brackets?
2. Can they evaluate iterated negation?



PARITY

Set of bit strings with an even number of 1s

● Extremely simple regular language, 
recognized by automaton with two states

● Prerequisite to evaluating Boolean formulas

● RNNs, LSTMs, GRUs,... can do this (at least in 
theory)

● If transformers can’t model this, they can’t 
model any non-quasi-aperiodic language
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DYCK2

● Correctly bracketed words over (, [ , ], )

● All context-free languages arise from some 
DYCKn through intersection with regular 
language + letter substitution (Chomsky and 
Schutzenberger, 1963)

● LSTMs are capable of solving this perfectly, at 
least in theory, using infinite precision
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What is the computational power of transformers?

I’ll investigate this question theoretically.

Can transformers theoretically model hierarchical structure with unbounded 
recursion?

1. Can they correctly close brackets?     --  Dyck2

2. Can they evaluate iterated negation?    -- Parity

Can a transformer correctly classify inputs as (not) belonging to these languages?
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X1 X2 X3 X4 X5Input

Positional 
Embeddings
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Transformer Architecture (Vaswani et al., 2017)



P1 P2 P3 P4 P5

X1 X2 X3 X4 X5Input

Positional 
Embeddings

Attention Head

Transformer Architecture (Vaswani et al., 2017)



P1 P2 P3 P4 P5

X1 X2 X3 X4 X5Input

Positional 
Embeddings

Attention Head

Attention Weights

Transformer Architecture (Vaswani et al., 2017)



P1 P2 P3 P4 P5

X1 X2 X3 X4 X5Input

Positional 
Embeddings

Attention Head

Soft Attention

Transformer Architecture (Vaswani et al., 2017)



P1 P2 P3 P4 P5

X1 X2 X3 X4 X5Input

Positional 
Embeddings

Attention Head

Hard Attention

Transformer Architecture (Vaswani et al., 2017)



P1 P2 P3 P4 P5

X1 X2 X3 X4 X5Input

Positional 
Embeddings

Transformer Architecture (Vaswani et al., 2017)



P1 P2 P3 P4 P5

X1 X2 X3 X4 X5Input

Positional 
Embeddings

Layer 1

Transformer Architecture (Vaswani et al., 2017)



X1 X2 X3 X4 X5Input

Layer 1

Layer N

Layer 2

. . .
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Embeddings

Transformer Architecture (Vaswani et al., 2017)
Prediction

(e.g., next word)
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Positional 
Embeddings

Soft Attention

● less easy to train from scratch (Shen et al 2018)

● But, heads in trained NLP models tend to 
concentrate their attention on few positions 
(Voita et al., 2019; Clark et al., 2019)

 ⇒ may be a reasonable theoretical model

● standard choice in practice
● easier to train with SGD



Part 1: Hard Attention

Proof Idea:

Assume we have a candidate transformer given.

We construct a pair of inputs that are classified the same, even though one is in 

Parity and the other is not (same for Dyck2).

Method: We fix a few input bits to ‘distract’ the transformer, so that it ignores most 
input bits.
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X1 X5Input X2 01

Layer 1

Layer N

Prediction

Layer 2

. . . Idea: Some input bits will be 
ignored, since their attention 
weights are always smaller 
than those of the fixed bits.



X1 X5Input X2 0

Layer 1

Layer N

Prediction

Layer 2

. . . The entire 
network ignores 
this bit!

Consequence: It could not have 
modeled PARITY, since every bit 
matters for PARITY.
(Similar proof works for DYCK2)
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For each input bit, imagine 
the highest possible 
attention value.
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By fixing one input, we can 
make the head ignore all 
remaining input bits.
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every Layer 1 head.
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fixing all inputs.



Input

Layer 1

Layer N

Prediction

Layer 2

. . .

Problem: We might end up 
fixing all inputs.

Solution: Fix bits in such a 
way that each head 
ignores all but k input bits 
(for some constant k)

X1 X51X2 0



Input

Layer 1

Layer N

Prediction

Layer 2

. . .

Problem: We might end up 
fixing all inputs.

Solution: Fix bits in such a 
way that each head 
ignores all but k input bits 
(for some constant k)

X1 X51X2 0



Input

Layer 1

Layer N

Prediction

Layer 2

. . .

Problem: We might end up 
fixing all inputs.

Solution: Fix bits in such a 
way that each head 
ignores all but k input bits 
(for some constant k)

X1 X51X2 0



Problem: We might end up 
fixing all inputs.

Solution: Fix bits in such a 
way that each head 
ignores all but k input bits 
(for some constant k).

Can guarantee that this 
fixes only < 10% of bits.
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. . .

X1 X51X2 0
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*   with p=95%
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1  with p=2.5%

Proof Idea
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Proof Idea
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inputs, and
2) only < 10% of bits are fixed?

Enough to show that this is > 0!

Proof Idea
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What is Probability that
1) each head depends on only k 

inputs, and
2) only < 10% of bits are fixed?

Enough to show that this is > 0!

Show this by calculating for 
each head and combining via 
Lovasz Local Lemma.

Proof Idea

1 * 0 * *
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into Layer 2….
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...and repeat the 
construction...
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Input

Layer N

Prediction

We can now fold Layer 1 
into Layer 2….

X1 X51

...and repeat the 
construction…

...until only the final layer 
remains!
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Input

Layer N

Prediction

X1 X51

The prediction ignores bit X5!

Thus, the transformer could 
never have modeled Parity (or 

Dyck2).
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Part 2: Soft Attention

Results as strong as for hard attention would settle outstanding problem in 
computational complexity

→ probably very hard to attain with currently available methods!

Instead:

● Prove bounds on cross-entropy in prediction
● Focus on smooth activation functions as found in practice
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Imagine we change one input symbol.
How much can this change the prediction?
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Output1 Output2
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As input length n → ∞:  |Output1-Output2| = O(1/n)

Output1 Output2
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As input length n → ∞:  |Output1-Output2| = O(1/n)

0 1 110 1 11

Output1
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But the strings should receive opposite labels.

PARITY PARITY



As input length n → ∞:  |Output1-Output2| = O(1/n)

Output1
Output2

But the strings should receive opposite labels.

For a continuous prediction function, cross-entropy goes to chance level as 
n → ∞

PARITY PARITY

Similar argument for DYCK2.

0 1 110 1 11 0 1



Discussion

Transformers cannot model PARITY or DYCK2 as inputs get longer.

 ⇒ they cannot model wide subclasses of regular and context-free languages

Contrast with LSTMs, which can model these perfectly (at least when precision is 

unbounded).



● Chomsky (1956): Language not regular, maybe not even context-free

● Montague (1972): Meaning described by logical formulas transduced 
from context-free parse trees.

● Shieber (1985): Swiss German not even context-free

… while transformers cannot emulate stacks.

What does this mean for language and NLP?

the child hit the ball
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the formal languages typically assumed in theoretical linguistics.
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What does this mean for language and NLP?

● Natural language can be approximated well with a model that is far too weak for 
the formal languages typically assumed in theoretical linguistics.

● How to reconcile with success in NLP?

○ Practical models circumvent asymptotic limitations by having many layers and 
parameters?

○ Transformers cannot fully understand language like humans do?

Low Perplexity != True Understanding?

○ Humans also have trouble doing these things accurately?

Understanding naturalistic input might not require fully solving these problems?



Thank you!



Conclusion

● Investigated computational power of transformers to model hierarchical 
structure

● Focus on Parity and Dyck2

● Negative results for both hard and soft attention
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4. Can transformers help understand why humans can do some recursion 
but struggle with center-embedding?



Questions

1. Can we characterize more exactly the formal languages that 
transformers capture? E.g., which regular languages?

2. What theoretical properties explain why transformers work better than 
LSTMs?

3. Link self-attention to psycholinguistic models that predict that humans 
have trouble with recursion?

4. Can transformers help understand why humans can do some recursion 
but struggle with center-embedding?

5. What do you think?



Discussion

Examples that hard-attention transformers can solve easily:

● 1*             (also a two-state regular language)
● anbn                 (also a basic context-free language)

Difference from Parity and Dyck2: Fixing a few bits can easily force word to 
be outside of language.



What is the computational power of transformers?

Tran et al (EMNLP 2018):

LSTMs appear to work better than 
transformers at

● English agreement
● evaluating logical formulas

Similar result: Evans et al. (ICLR 2018)

LSTM

Transformer
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