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Motivation

What makes some NLP tasks harder and others easier?

Simple models based on lexical classifiers 
provide good performance on some tasks.

On other tasks, strong performance 
attained only recently with massive 
pretrained models.

sentiment analysis

POS tagging

...

Winograd sentences

Entailment

...

This talk: Propose a theoretical framework to formalize and 
capture these differences.
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Existing Complexity Metrics

prominent classification of formal languages 
by complexity

Chomsky Hierarchy (Chomsky, 1956)

does not measure how hard it is to achieve high accuracy 
on realistic task distributions. 

asymptotic worst-case complexity
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Existing Complexity Metrics

Kolmogorov complexity (Li and Vitányi, 1993)

well-defined only in the asymptotic limit

uncomputable

length of the shortest program producing an output
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Sensitivity for Sequence Classification

Sensitivity Bounds for ML Methods

Sensitivity and Difficulty of NLP Tasks
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Idea: Tasks are difficult when they have complex decision 
boundaries.

Recent work highlights need to evaluate NLP models at their 
decision boundary (e.g., Levesque et al., 2011; Jia and Liang, 2017; Ribeiro et al., 2018; 
Gardner et al., 2019; Kaushik et al., 2019).
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Sensitivity

When is a decision boundary complex?

Simple Task Difficult Task

When the label often varies between neighbors!

Can predict label even 
looking at part of the input.

Changing any part of the input 
can flip the label.



Sensitivity of Boolean Functions

For a function f : {-1,+1}ⁿ → {-1,+1}:

(Kahn et al., 1988; Nisan, 1991; Hatami et al., 2010; O’Donnell, 2014; Huang 2019)



Sensitivity of Boolean Functions

For a function f : {-1,+1}ⁿ → {-1,+1}:

Input string 
x in {-1,+1}ⁿ 

(Kahn et al., 1988; Nisan, 1991; Hatami et al., 2010; O’Donnell, 2014; Huang 2019)



Sensitivity of Boolean Functions

For a function f : {-1,+1}ⁿ → {-1,+1}:

Input string 
x in {-1,+1}ⁿ Result of flipping 

the i-th bit

(Kahn et al., 1988; Nisan, 1991; Hatami et al., 2010; O’Donnell, 2014; Huang 2019)



Sensitivity of Boolean Functions

For a function f : {-1,+1}ⁿ → {-1,+1}:

Input string 
x in {-1,+1}ⁿ Result of flipping 

the i-th bit

"How many Hamming neighbors of x have the opposite label?"

(Kahn et al., 1988; Nisan, 1991; Hatami et al., 2010; O’Donnell, 2014; Huang 2019)
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Sensitivity of Boolean Functions

Low 
Sensitivity

High 
Sensitivity

Functions that 
depend on few 
inputs

Functions that 
are close to linear

+1 +1 → +1
+1 -1 → -1

(Kahn et al., 1988; Nisan, 1991; Hatami et al., 2010; O’Donnell, 2014; Huang 2019)

s(f
Parity

, x) = n for any x, |x|=n
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Sensitivity of Boolean Functions

Low 
Sensitivity

High 
Sensitivity

Well approximated 
with linear 
functions

Impossible to 
approximate with 
linear functions

Shallow decision 
trees

Deep decision 
trees

Low-degree 
polynomials

High-degree 
polynomials

(Kahn et al., 1988; Nisan, 1991; Hatami et al., 2010; O’Donnell, 2014; Huang 2019)
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When is a decision boundary complex?

Simple Task Difficult Task

When the label often varies between neighbors!

Most neighbors have the 
same label as the point

Neighbors have the opposite 
label as the point
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1. Alphabets with more than two elements

(O’Donnell, 2014, Def. 8.22)

Inputs X’ that agree with x in all 
but the i-th input

Applying Sensitivity in NLP
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Applying Sensitivity in NLP

When measuring task difficulty, we want to focus on inputs 
that are plausible problem instances

Task-specific input distributions

Inputs typically respect grammatical structure of language

Desiderata:

1. Alphabets with more than two elements

2. Nonuniform distribution



Sensitivity

Alphabet Σ (e.g. words, BPE, characters)



Sensitivity

an amazing movie

stunning visuals

i can’t believe i wasted my 
time on this dumb movie

mostly boring

what a dumb movie

this was hilarious

Alphabet Σ (e.g. words, BPE, characters)

Distribution ∏ over the set Σ* of finite strings

truly incredible, great 
plot and good acting



Sensitivity

an amazing movie

stunning visuals

i can’t believe i wasted my 
time on this dumb movie

mostly boring

truly incredible, great 
plot and good acting

what a dumb movie

this was hilarious

-1

+1

+1

-1

+1

+1

-1

Alphabet Σ (e.g. words, BPE, characters)

Distribution ∏ over the set Σ* of finite strings

Classification task = Function f : Σ* → [-1,1]
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an amazing movie

stunning visuals

i can’t believe i wasted my 
time on this dumb movie

mostly boring

truly incredible, great 
plot and good acting

what a dumb movie

this was hilarious

-1

+1

+1

-1

+1

+1

-1

Alphabet Σ (e.g. words, BPE, characters)

Distribution ∏ over the set Σ* of finite strings

Classification task = Function f : Σ* → [-1,1]

Sensitivity:

In how many places 
can we change the 
input to change the 
output label while 
respecting ∏?
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Subset Sensitivity

KJIFNTGFJKBASHHKJ

KJQWFTGFJKKHYHHKJ

KJNFATGFJKTBZHHKJ

KJMZXTGFJKUASHHKJ

Input string in Σ*

KJHJKTGFJKJTGHHKJ

Subset of {1, …, |x|}

KJHJKTGFJKJTGHHKJ

-1

+1

-1

-1

…...
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“We still know the label 
even if we don’t know the 
blue word.”
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A brilliant, amazing, convincing movie.
A boring, annoying, disappointing movie.

A gorgeous, witty, seductive movie.

Both sentiments represented 
among high-probability 
neighbors

s(f,x,P) is high

“We don’t know the label if 
we don’t know the blue 
words.”
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Block Sensitivity

“In how many different places can we change the input to flip the 
label?”

...while respecting input distribution ∏.

New probabilistic adaptation of previously-defined block sensitivity of 
Boolean functions (Nisan, 1991; Bernasconi, 1996; Hatami et al., 2010).
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block sensitivity: 1.88

block sensitivity: 0.93
s(f,x,P) = 0.93

s(f,x,P) = 0.96

s(f,x,P) = 0.74

s(f,x,P) = 0.18
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Sensitivity for Sequence Classification
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Sensitivity and Difficulty of NLP Tasks

formalizes complexity of decision boundary

generalizes theory from Boolean functions 
to general sequence classification
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this is an amazing movie, really stunning visuals and acting

+

Output

Averaging word embeddings to derive sentence embeddings  (Wieting et al., 
2015; Arora et al., 2017; Ethayarajh, 2018)

Convolutional Networks (Kim 2016) with Average Pooling

Log-linear models and SVMs using n-gram features
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output function
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Window width



this is an amazing movie, really stunning visuals and acting

+

Output

independent of the input length!
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LSTMs and Transformers

RNNs and LSTMs can express PARITY because they express all regular 
languages (Horne and Hush, 1994)

Transformers cannot express PARITY generalizably across input lengths



Transformers and PARITY
Proof Idea:

Assume we have a candidate transformer given.

For proof, see: Hahn (2020, TACL)



Transformers and PARITY
Proof Idea:

Assume we have a candidate transformer given.

We construct a pair of inputs that are classified the same, even though their parity 
differs

For proof, see: Hahn (2020, TACL)



Transformers and PARITY
Proof Idea:

Assume we have a candidate transformer given.

We construct a pair of inputs that are classified the same, even though their parity 
differs

Method: We fix a few input bits to ‘distract’ the transformer, so that it ignores most 
input bits.

For proof, see: Hahn (2020, TACL)
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For proof, see: Hahn (2020, TACL)



X1 X5Input X2 01

Layer 1

Layer N

Prediction

Layer 2

. . . Idea: Some input bits will be 
ignored, since their attention 
weights are always smaller 
than those of the fixed bits.

For proof, see: Hahn (2020, TACL)



X1 X5Input X2 0

Layer 1

Layer N

Prediction

Layer 2

. . . The entire 
network ignores 
this bit!

Consequence: It could not 
have modeled PARITY, since 
every bit matters for PARITY.1

For proof, see: Hahn (2020, TACL)



Can practically learn 
high-sensitivity functions?

LSTM

Can represent fPARITY?

Transformer

Lexical Classifier, 
CNN, ...

No Strict BoundNo

No

Yes



Uniformly random Boolean 
functions



Randomly initialized LSTMs, binarized 
scalar output with a threshold chosen 
to balance +1 and -1 outputs.

Uniformly random Boolean 
functions



• LSTM with 128 units, Adam (lr 0.003, batch size 32)
• No train/test split – this tests fitting ability, not generalization.

Iterations:

Low-sensitivity functions are more learnable
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Low-sensitivity functions are more learnable

With a transformer
(4 layers, 4 heads, 32 
units)

8 layers 512 units



Can practically learn 
high-sensitivity functions?

LSTM

Can represent fPARITY?

Transformer

Lexical Classifier, 
CNN, ...

NoNo

No

Yes Hard

Hard

Strict Bound
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Sensitivity and Difficulty of NLP Tasks

Sensitivity can be used for rigorous 
analysis of the power of ML models

Sensitivity predicts learnability
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Estimating Sensitivity

Estimate f using a 
strong model of 
the task.



Estimating Sensitivity

Sampled using XLNet (Yang et al 2019) and u-PMLM 
(Liao et al 2020).

Inputs that agree with x outside of positions in P.



Estimating Sensitivity

Exponential number of subsets!

Restrict to polynomial number of subsets

Results in lower bound



• CR, MR: review sentiment (Hu and Liu, 2004; Pang and Lee, 2005)

• MPQA: question type (Wiebe et al., 2005)

• Subj: subjectivity (Pang and Lee, 2005)

• f estimated using finetuned RoBERTa (Liu et al., 2019)



• GLUE challenge suite (Wang et al., 2019)

• f estimated using finetuned RoBERTa

Winograd 
Schema 
Challenge 
(Levesque et al 
2012)

Recognizing 
Textual 
Entailment 
(Dagan et al 
2009)

Stanford 
Sentiment 
Treebank 
(Socher et al 
2013)
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• Estimated using medium-size GPT-2

"The author next to the senators hurt {himself, themselves}."
"The author that liked the senators hurt {himself, themselves}."

• Anaphor licensing (Marvin and Linzen, 2018; Hu et al., 2020)



Identifying the relative 
position of the head (an 
integer)

Identify the 
dependency label

Identify POS tag

• f estimated using off-the-shelf parser (Qi et al., 2018, 2020) on English Web Treebank





Input length doesn't explain away sensitivity 
differences
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R = −0.71, p = 0.001 R = −0.82, p = 0.0002

R = −0.05, p = 0.87



R = −0.66, p = 0.005 R = −0.76, p = 0.002

R = −0.07, p = 0.84

Using u-PMLM (Liao et al., 2020) instead of XLNet:
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Sensitivity Identifies Difficult Inputs



https://nlp.stanford.edu/sentiment/treebank.html?w=ode%2Cbad

Sensitivity Identifies Difficult Inputs



Same number of 
positive and negative 
constituents

All constituents have 
the same sentiment.

Sensitivity Identifies Difficult Inputs



Same number of 
positive and negative 
constituents

All constituents have 
the same sentiment.

Sentence length not 
significant beyond 
dispersion (β = 0, p = 
0.49)

β = 0.53, p < 1.95 · 10 
−10

Sensitivity Identifies Difficult Inputs
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Dispersion 0.97
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Dispersion 0
Block Sensitivity 0.93



3 positive constituents
5 negative constituents
Dispersion 0.97
Block Sensitivity 1.88

Only positive constituents
Dispersion 0
Block Sensitivity 0.93



β = −1.22,
p = 4.1 · 10 −10

β = −1.16,
p = 1.41 · 10 −9

β = −1.37,
p = 1.6 · 10 −5 Sentence length not 

significant beyond 
sensitivity (p > 0.05)

Sensitivity Identifies Difficult Inputs
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a painfully funny ode to bad behavior

Why is Pretraining so Successful?

BERT

Logistic Classifier

Pretrained models extract 
features from which label 
can be decoded with simple 
classifiers

Future work:
How do they achieve this?

In effect, they reduce task 
sensitivity!



Sensitivity and Spurious Correlations

Models often rely on 
spurious statistical patterns



Sensitivity and Spurious Correlations

Models often rely on 
spurious statistical patterns

Simple lexical correlates of the 
label in Reading Comprehension 
(e.g. Kaushik and Lipton, 2018; Gururangan et 
al., 2018)



Sensitivity and Spurious Correlations

Models often rely on 
spurious statistical patterns

Hypothesis alone predictive of 
the label in entailment
tasks (Poliak et al., 2018)

Simple lexical correlates of the 
label in Reading Comprehension 
(e.g. Kaushik and Lipton, 2018; Gururangan et 
al., 2018)



Sensitivity and Spurious Correlations

Models often rely on 
spurious statistical patterns

Hypothesis alone predictive of 
the label in entailment
tasks (Poliak et al., 2018)

Simple lexical correlates of the 
label in Reading Comprehension 
(e.g. Kaushik and Lipton, 2018; Gururangan et 
al., 2018)

Make the decision boundary `simpler’ 
(e.g., Gardner et al. 2019).



Sensitivity and Spurious Correlations

Models often rely on 
spurious statistical patterns

Conjecture: They reduce sensitivity.

Make the decision boundary `simpler’ 
(e.g., Gardner et al. 2019).

Hypothesis alone predictive of 
the label in entailment
tasks (Poliak et al., 2018)

Simple lexical correlates of the 
label in Reading Comprehension 
(e.g. Kaushik and Lipton, 2018; Gururangan et 
al., 2018)



Sensitivity and Spurious Correlations

Models often rely on 
spurious statistical patterns

Labels are correlated with 
output of simple lexical 
classifiers

Simple lexical correlates of the 
label in Reading Comprehension 
(e.g. Kaushik and Lipton, 2018; Gururangan et 
al., 2018)

Conjecture: They reduce sensitivity.

Make the decision boundary `simpler’ 
(e.g., Gardner et al. 2019).

Hypothesis alone predictive of 
the label in entailment
tasks (Poliak et al., 2018)



Sensitivity and Spurious Correlations

Models often rely on 
spurious statistical patterns

Hypothesis alone predictive of 
the label in entailment
tasks (Poliak et al., 2018)

Labels are correlated with 
output of simple lexical 
classifiers

Simple lexical correlates of the 
label in Reading Comprehension 
(e.g. Kaushik and Lipton, 2018; Gururangan et 
al., 2018)

Changing the premise 
while staying within the 
task distribution less likely 
to flip the label

Conjecture: They reduce sensitivity.

Make the decision boundary `simpler’ 
(e.g., Gardner et al. 2019).



Sensitivity and Spurious Correlations

Models often rely on 
spurious statistical patterns

Future work: Can sensitivity help automatically mitigate spurious patterns?

Hypothesis alone predictive of 
the label in entailment
tasks (Poliak et al., 2018)

Labels are correlated with 
output of simple lexical 
classifiers

Simple lexical correlates of the 
label in Reading Comprehension 
(e.g. Kaushik and Lipton, 2018; Gururangan et 
al., 2018)

Changing the premise 
while staying within the 
task distribution less likely 
to flip the label

Conjecture: They reduce sensitivity.

Make the decision boundary `simpler’ 
(e.g., Gardner et al. 2019).
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Measures complexity of decision boundary

Generalizes well-studied theory from 
Boolean functions to general sequence 
classification

Conclusion

Introduced sensitivity as a complexity measure for sequence classification
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high-sensitivity functions

Conclusion

Introduced sensitivity as a complexity measure for sequence classification

Even LSTMs & Transformers are biased towards low sensitivity
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Sensitivity predicts what functions are difficult 
for ML models

Sensitivity predicts difficulty of NLP tasks

Conclusion

Introduced sensitivity as a complexity measure for sequence classification

Characterizes which tasks require pretrained models

Predicts difficulty of individual inputs



Thanks!
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Why Subsets instead of Individual Words?

Words are composed into phrases. Changing a phrase can change 
meaning when changing any word cannot.

Model fit predicting accuracy on SST-2 is stronger with 
block sensitivity

(1)

(4)

Block sensitivity can only increase with finer tokenization.(3)

There are distributions ∏ where we would always get 0 with singletons. (2)
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Relation to Adversarial Examples

(Szegedy et al., 2013; Jia and Liang, 2017)

Neighboring inputs within the data 
distribution on which the true label 
changes.

Adversarial Brittleness High Sensitivity

a painfully funny ode to bad behavior

not really funny, just bad behavior

+1

-1

Neighboring inputs on which the model 
output changes erroneously.

a painfully funny ode to bad behavior

a painfully funny ode to terrible behavior

+1

+1

+1

-1
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Approximating Sensitivity without Models



Poisson regression:

β = 0.061,

p = 0.0023
controlling for task, 
sentence length, and 
random variation between 
sentences and annotators.
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Transformer

Empirical Learnability Results:

Accuracy
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Inductive Biases in DL

Empirical and theoretical evidence that neural networks generalize 
because they are biased towards “simple” functions (De Palma et al., 2018).

Empirically, neural networks learn low Fourier frequencies first 
(Rahaman et al., 2019; Xu et al., 2019; Cao et al., 2019).

• For Boolean functions: low average sensitivity <=> Fourier spectrum 
concentrated on low frequencies!

Some studies propose notions close to sensitivity (Franco, 2006; De Palma 
et al., 2018, Novak et al., 2018).

Even powerful neural models are biased towards low 
sensitivity
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Other Complexity Measures

Chomsky Hierarchy and Kolmogorov Complexity are orthogonal to 
sensitivity

Kolmogorov 
Complexity

PARITY

Low-sensitivity 
functions in 
every layer
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Other Complexity Measures

Chomsky Hierarchy and Kolmogorov Complexity are orthogonal to 
sensitivity

Kolmogorov Complexity

uncomputable

only asymptotically defined

estimated on individual inputs

takes input distribution into 
account

asymptotic worst-case 
complexity

not defined for 
individual inputs

Sensitivity



Conjecture about Degree and Block 
Sensitivity







Proof for Transformers and PARITY



X1 X2 X3 X4 X5Input

Layer 1

Layer N

Prediction

Layer 2

. . .



X1 X5Input X2 01

Layer 1

Layer N

Prediction

Layer 2

. . . Idea: Some input bits will be 
ignored, since their attention 
weights are always smaller 
than those of the fixed bits.



X1 X5Input X2 0

Layer 1

Layer N

Prediction

Layer 2

. . . The entire 
network ignores 
this bit!

Consequence: It could not 
have modeled PARITY, since 
every bit matters for PARITY.
(Similar proof works for DYCK2)

1
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11 0 1 0Input

Layer 1

Layer N

Prediction

Layer 2

. . .
For each input bit, imagine 
the highest possible 
attention value.
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Problem: We might end up 
fixing all inputs.

Solution: Fix bits in such a 
way that each head 
ignores all but k input bits 
(for some constant k).

Can guarantee that this 
fixes only < 10% of bits.

Input

Layer 1

Layer N

Prediction

Layer 2

. . .

X1 X51X2 0
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Set each input i.i.d. to

*   with p=95%
0  with p=2.5%
1  with p=2.5%

Proof Idea
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1) each head depends on only k 

inputs, and
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Input

Layer 1

Layer N

Prediction

Layer 2

. . .

What is Probability that
1) each head depends on only k 

inputs, and
2) only < 10% of bits are fixed?

Enough to show that this is > 0!

Show this by calculating for 
each head and combining via 
Lovasz Local Lemma.

Proof Idea

1 * 0 * *
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Input

Layer N

Prediction

We can now fold Layer 1 
into Layer 2….

X1 X51

...and repeat the 
construction…

...until only the final layer 
remains!

00



Input

Layer N

Prediction

X1 X51

The prediction ignores bit X5!

Thus, the transformer could 
never have modeled Parity (or 

Dyck2).

00


