Supplement: Theoretical Limitations of Self-Attention in Neural Sequence Models

Michael Hahn

May 5, 2021

Here I am providing two supplements to the published TACL paper: First, a more formal writeup of the hard attention proof. This has benefited a lot from discussions with Gail Weiss and Will Merrill. Second, I am providing a missing detail in the soft attention proof (thanks for Navin Goyal and Satwik Bhattamishra for spotting this).

S1 Results for Hard Attention

Theorem 1. Let any hard attention transformer be given, and let $C \in(0,1)$. Then there is a restriction ρ and an integer $c>0$ such that

$$
\left|\left\{i \leq n: \rho_{n}(i)=*\right\}\right| \geq C n
$$

(for all sufficiently large n) and such that the function computed by the transformer on the restricted input depends only on $\leq c$ inputs, independent of input length n.

Definition 2 (c-Transformer). Let c be a positive integer. A c-transformer is one in which the layer-0 activations $y_{j}^{(0)}$ depend on the embeddings not just at one position j, but are a function of the embeddings at $\leq c$ input positions:

$$
\begin{equation*}
y_{j}^{(0)}=f_{n, j}^{i n p}\left(\left(v_{i_{i}^{j, n}}, p_{i_{1}^{j, n}}\right), \ldots,\left(v_{i_{c}^{j^{n}}}, p_{i_{c}^{j, n}}\right)\right) \tag{1}
\end{equation*}
$$

for some indices $i_{s}^{j, n} \in\{1, \ldots, n\}(s=1, \ldots, c)$.
Definition 3. We say $\rho^{\prime} \succ \rho$ if, whenever $\rho_{n}^{\prime}(i)=*$, then $\rho_{n}(i)=*$.
We write ρT for the function resulting from applying ρ to T.
We write $\rho \Sigma^{*}$ for the set of inputs compatible with ρ.
With this technical notion, we show that we can reduce layers, iteratively removing the lowest layer until no self-attention layer is left:

Lemma 4 (Depth Reduction Lemma). Given a c-transformer T with L layers, and some restriction ρ such that

$$
\begin{equation*}
\left|\left\{i \leq n: \rho_{n}(i)=*\right\}\right| \geq C n \tag{2}
\end{equation*}
$$

($C \in(0,1])$ for all sufficiently large n. Choose any $C^{\prime}<C$.
Then there is a restriction $\rho^{\prime} \succ \rho$ such that

$$
\begin{equation*}
\left|\left\{i \leq n: \rho_{n}^{\prime}(i)=*\right\}\right| \geq C^{\prime} n \tag{3}
\end{equation*}
$$

for all sufficiently large n, and such that there is a $\left(c \cdot\left(2^{c} k H+1\right)\right)$-transformer T^{\prime} with $L-1$ layers, for some integer k (depending on C^{\prime}), where $H \geq 1$ is the number of attention heads at each layer and position, such that $\rho^{\prime} T=\rho^{\prime} T^{\prime}$.

The lemma implies Theorem 1 :
Proof of Theorem 1 The output of the transformer is determined by the last activation $y_{n}^{(L)}$. Apply the Depth Reduction Lemma iteratively, choosing the constants C^{\prime} in the lemma appropriately, until only the zero-th layer remains. Then, after applying the resulting restriction, the final activation $y_{n}^{(L)}$ is now computed by $y_{n}^{(0)}$, which is determined by a bounded number of input bits.

S1.1 Proving the Depth Reduction Lemma

In this section, we will prove the Depth Reduction Lemma. We construct the restrictions ρ_{n}^{\prime} separately for each n, on the basis of the given restriction ρ_{n}. In this process, we will only restrict additional bits, that is, the only case in which $\rho_{n}^{\prime}(i)$ can be different from $\rho_{n}(i)$ is that $\rho_{n}^{\prime}(i)$ may be 0 or 1 where $\rho_{n}(i)$ was $*$. The construction proceeds in three stages $\rho_{n}^{(1)}, \rho_{n}^{(2)}$, and $\rho_{n}^{(3)}=\rho_{n}^{\prime}$, which all may restrict additional bits. At the end, we verify that the conclusion of the Depth Reduction Lemma is satisfied for the resulting restriction ρ_{n}^{\prime}.

Throughout the proof, we will need a few parameters independent of n : First, we need an integer k that has to be sufficiently large for the proof to succeed, and will be fixed later in the proof. Second, we need parameters $\eta \in\left(0, \frac{1}{2}\right), q \in(0,1)$ and $\delta>0$; they can be chosen as follows:

Definition 5. Choose $\eta \in\left(0, \frac{1}{2}\right)$ small, $q \in(0,1)$, and $\delta>0$ (such that $(1+\delta) q \in(0,1)$) in such a way as to achieve

$$
\begin{equation*}
(1-2 \eta) \cdot(1-(1+\delta) q)=C^{\prime} / C \tag{4}
\end{equation*}
$$

A possible choice to satisfy this is $(1+\delta) q=\frac{1}{2}, 2 \eta=1-2 C^{\prime} / C$.
Lemma 6 (Stage 1). There is N and a restriction $\rho^{(1)} \succ \rho$ such that

1. each $\rho^{(1)}$-free input bit serves as an input to at most $\leq \frac{1}{\eta} c / C$ many different layer-0 heads, when applying $\rho_{n}^{(1)}$.
2. For $n>N$,

$$
\begin{equation*}
\#\left\{i \leq n: \rho_{n}^{(1)}(i)=*\right\} \geq(1-\eta) C n \tag{5}
\end{equation*}
$$

Proof. Assume the number of input bits feeding into more than $\frac{1}{\eta} c / C$ different layer- 0 activations is $\geq \eta C n$. Then the number of pairs of input bits and depending layer- 0 activations is $>\eta C n \cdot \frac{1}{\eta} c / C=n c$. But there are at most $n c$ such pairs, because there are n layer- 0 activations, each of which depends on $\leq c$ inputs. So the number of input bits with $>\frac{1}{\eta} c / C$ depending layer- 0 heads is $\leq \eta C n$. We can obtain $\rho_{n}^{(1)}$ from ρ_{n} by restricting these input bits to some fixed value in $\{0,1\}$ (it doesn't matter which one), and the set $\left\{i \leq n: \rho_{n}^{(1)}(i)=*\right\}$ still has at least $(1-\eta) C n$ elements, for all sufficiently large n.

We write (h, i) for a layer-1 attention head $h(h=1, \ldots, H)$ at position $i(i=1, \ldots, n)$. Let $V_{\rho}(i)$ denote the possible values of $y_{i}^{(0)}$. As $y_{i}^{(0)}$ depends on $\leq c$ input bits, we have:

$$
\begin{equation*}
\left|V_{\rho}(i)\right| \leq 2^{c} \tag{6}
\end{equation*}
$$

Definition 7. For a restriction ρ, a head (h, i), a value $z \in V_{\rho}(i)$, and each position $j \in\{1, \ldots, n\}$, set

$$
\begin{equation*}
A_{((h, i), z), j, \mathrm{p}}:=\max _{x_{1} \ldots x_{n} \in \rho \Sigma^{n}: y_{i}^{(0)}=z} f_{1, h}^{a t t}\left(z, y_{j}^{(0)}\right) \tag{7}
\end{equation*}
$$

For each value $z \in V_{\rho}(i)$, we rank the positions $\{1, \ldots, n\}$ downwards by this value, obtaining a sequence (in the case of ties, we resolve as we do when computing hard attention)

$$
\begin{equation*}
J_{((h, i z), \rho}:=\left(j_{1}^{(z)}, \ldots, j_{n}^{(z)}\right) \tag{8}
\end{equation*}
$$

For each $((h, i), z)$, obtain the sequence

$$
\begin{equation*}
1 \leq i_{1}^{(h, i, z, \rho)}<i_{2}^{(h, i, z, \rho)}<\cdots<i_{L}^{(h, i, z, \rho)} \leq n \tag{9}
\end{equation*}
$$

of those indices j such that there is some ρ-free input x_{q} that feeds into the activation at j and no activation and $j^{\prime}<j$.

Definition 8 (Satisfaction). Let σ be a restriction, and $k \in \mathbb{N}$, and assume $z \in V_{\sigma}(i)$. We say that a pair $((i, h), z)$ is (k, σ)-satisfied if its function value depends on at most $\leq c k$ many input bits when applying ρ.

Lemma 9 (Satisfaction and Dependency). If $((h, i), z)$ is (k, σ)-unsatisfied, then the sequence

$$
\begin{equation*}
\left(i_{s}^{(h, i,,, \rho)}: s=1, \ldots, L\right) \tag{10}
\end{equation*}
$$

has length Lat least $\geq k$.
Proof. Assume some of the layer-0 heads it (k, ρ)-depends on. The higher-ranked layer- 0 heads can only have a total of $\leq c k$ inputs, contradiction.

Lemma 10 (Preservation of Satisfaction). Let σ be a restriction, and $k \in \mathbb{N}$. If $((i, h), z)$ is σ-satisfied, and $\sigma^{\prime} \succ \sigma$, then $((i, h), z)$ is also σ^{\prime}-satisfied.

Proof. Immediate.
Definition 11. An unsatisfied tuple $((h, i), z)(k, \rho)$-depends on some input x_{i} if $\rho(i)=*$ and x_{i} appears as an input to some $j_{r}^{(h, i, z, \rho)}$ for $r \leq i_{k}^{(h, i z, \rho)}$.

Definition 12. An unsatisfied tuple $((h, i), z)(k, \rho)$-depends on some layer-0 head j if $j=j_{s}^{(h, i, z, \rho)}$ for some $s \leq i_{k}$.
Lemma 13. $((h, i), z)(k, \rho)$-depends on x_{i} iff x_{i} appears as an input to some $j_{i_{s}}^{(h, i,, \rho)}\left(s \leq i_{k}\right)$.
Hence, $((h, i), z)(k, \rho)$-depends on at most $\leq c k$ input bits.
Proof. From the definitions.
Definition 14. Two unsatisfied tuples $((h, i), z),\left(\left(h^{\prime}, i^{\prime}\right), z^{\prime}\right)$ are (k, ρ)-neighbors if some $j_{i_{s}^{(h, z, p)}}$ for one and $j_{\left.i_{s^{\prime}} h^{\prime}, l^{\prime}, z^{\prime}, \rho\right)}$ for the other both (k, ρ)-depend on some input bit x_{l}.
Lemma 15. Let ρ be a restriction, and $k \in \mathbb{N}$. Assume the layer- 0 head at position j has more than $2^{c} k H$ many (k, ρ)-depending (k, ρ)-unsatisfied tuples $((h, i), z)$. Then there is a restriction $\rho^{\prime} \succ \rho$, restricting only $\leq c$ additional inputs, such that at least $k H$ many (k, ρ)-unsatisfied tuples $((h, i), z)$ become $\left(k, \rho^{\prime}\right)$-satisfied.

Proof. Let ρ be a restriction, and $k \in \mathbb{N}$. Assume the layer-0 head at position j has more than $2^{c} k H$ many (k, ρ)-depending (k, ρ)-unsatisfied tuples $((h, i), z)$. For each (k, ρ)-depending (k, ρ)-unsatisfied tuple $((h, i), z)$, collect the value q^{\prime} of $y_{j}^{(0)}\left(q^{\prime} \in V_{\rho}(j)\right)$ resulting in $A_{((h, i), z), j, \rho}$. There are $>2^{c} k H$ such tuples, but only 2^{c} possible values q^{\prime}. So one value q of them must occur $>k H$ times, by the Pigeonhole Principle. Thus, this $q \in V_{\rho}(j)$ is such that

$$
\begin{equation*}
f_{1, h}^{a t t}(z, q)=A_{((h, i), z), j, \rho} \tag{11}
\end{equation*}
$$

for at least $>k H$ many of these (k, ρ)-depending tuples $((h, i), z)$.
For such a tuple $((h, i), z), j$ now blocks attention on any lower-ranked elements of the ranking. The higher-ranked elements of the ranking can only depend on a total of $\leq c k$ input bits by Lemma 13 .

Definition 16 (Sequence of Restrictions). Define a (finite or infinite) sequence of restrictions $\rho^{(1)}=\sigma_{1} \prec$ $\sigma_{2} \prec \ldots$ as follows:

1. $\sigma_{1}:=\rho^{(1)}$
2. Let σ_{i} be given $(i \geq 1)$. If a layer- 0 head has more than $2^{c} k H$ many $\left(k, \sigma_{i}\right)$-depending $\left(k, \sigma_{i}\right)$-unsatisfied tuples $((h, i), z), f i x \leq c$ input bits to make $\geq k H$ tuples satisfied, using the preceding lemma, obtaining σ_{i+1}. Otherwise, terminate the procedure.

Lemma 17. There are K, N such that for all $k>K, n>N$, this procedure terminates with $\rho_{n}^{\prime} \succ \rho_{n}^{(1)}$ such that

1. We have

$$
\begin{equation*}
\#\left\{i \leq n: \rho_{n}^{\prime}(i)=*\right\} \geq(1-2 \eta) C n \tag{12}
\end{equation*}
$$

2. No layer-0 head has more than $2^{c} k H$ many $\left(k, \rho^{\prime}\right)$-depending $\left(k, \rho^{\prime}\right)$-unsatisfied tuples $((h, i), z)$.

Proof. Due to Lemma 10, this procedure can be iterated at most until each tuple $((h, i), z)$ is $\left(k, \sigma_{i}\right)$-satisfied, that is, at most

$$
\begin{equation*}
\frac{2^{c} H n}{k H}=\frac{2^{c} n}{k} \tag{13}
\end{equation*}
$$

times. Let U_{n} be the number of times this procedure is iterated ($U_{n} \leq \frac{2^{c} n}{k}$). At the end, for $n>N$,

$$
\begin{equation*}
\#\left\{i \leq n:\left(\sigma_{U}\right)(i)=*\right\} \geq(1-\eta) C n-c U_{n} \geq\left((1-\eta) C-\frac{2^{c} c}{k}\right) n \tag{14}
\end{equation*}
$$

By choosing k so large that $\frac{2^{c} c}{k} \leq \eta C$, we find that

$$
\begin{equation*}
\#\left\{i \leq n:\left(\sigma_{U}\right)_{n}(i)=*\right\} \geq(1-2 \eta) C n \tag{15}
\end{equation*}
$$

for every $n>N$. For the second claim, if this were not the case, the procedure would not have terminated at ρ_{n}^{\prime}.
Corollary 18 (Stage 2). There is K, N such that, for each $k>K$, there is a restriction $\rho^{(2, k)} \succ \rho^{(1)}$ such that

1. \#\{ín: $\left.\rho_{n}^{(2, k)}(i)=*\right\} \geq(1-2 \eta)$ Cn for each $n>N$
2. Every $\left(k, \rho^{(2, k)}\right)$-unsatisfied $((h, i), z)$ has at most $f \leq \frac{2^{2 c}}{\eta} c^{2} k^{2} H / C$ many $\left(k, \rho^{(2, k)}\right)$-unsatisfied $\left(k, \rho^{(2, k)}\right)$ neighbors.

Proof. Let $\rho^{(2, k)}$ be as given by Lemma 17. The first assertion is immediate from that lemma. For the second assertion, by that lemma, each layer-0 head has at most $\leq 2^{c} k H$ many $\left(k, \rho^{(2)}\right)$-depending $\left(k, \rho^{(2)}\right)$ unsatisfied tuples $((h, i), z)$. Using Lemma 6 and Lemma 13, each input bit has at most $\leq \frac{2^{c}}{\eta} k c H / C$ many $\left(k, \rho^{(2)}\right)$-depending $\left(k, \rho^{(2)}\right)$-unsatisfied tuples. On the other hand, a tuple $((h, i), z)$ can $\left(k, \rho^{(2)}\right)$-depend on $\leq k c$ inputs by Lemma 13. Multiplying these two bounds gives $\leq \frac{2^{2 c}}{\eta} k^{2} c^{2} H / C$.

In order to construct the third and final restriction $\rho_{n}^{(3)}$, we apply the "probabilistic method": We define a probability distribution over restrictions $\rho_{n}^{(3)}$, and show that the probability assigned to restrictions of the type we require is strictly greater than zero, showing that such a restriction exists.

Definition 19. Let $k>K$. For each input length n, define the distribution over restrictions $\rho_{n}^{(3, k)} \succ \rho_{n}^{(2, k)}$ that independently assigns to each input position $i \in\{1, \ldots, n\}$ the symbol 1 or 0 with probability $q / 2$ each $\left(q \in(0,1)\right.$ from Definition 5), and $*$ with probability $1-q$. On those input bits where $\rho_{n}^{(2, k)}(i) \neq *$, we restrict this random restriction to agree with $\rho_{n}^{(2, k)}(i)$.

Definition 20. Let $k>K$, and consider a $\left(k, \rho^{(2, k)}\right)$-unsatisfied tuple $((h, i), z)$. By Lemma 9 the sequence

$$
\begin{equation*}
\left(y_{j_{i_{s}^{(z)}}}^{(0)}: s=1, \ldots, L\right) \tag{16}
\end{equation*}
$$

has length at least $\geq k$.
Define $X_{i, h, k}^{(z)}$ to be the event that, for this tuple, none of the k layer-0 head it depends on $(s=1, \ldots, k)$ is fixed by $\mathrm{\rho}^{(3, k)}$ to the value

$$
\begin{equation*}
\arg _{q \in V_{\rho}(2, k)}\left(j_{\left.i_{s}, i, z, \rho^{(2)}\right)}\right) \max f_{1, h}^{a \operatorname{att}}(z, q) \tag{17}
\end{equation*}
$$

(or any element of the argmax, if multiple values achieve this attention weight).
Define $X_{0, k}$ to be the event that more than $(1+\delta) q$ of the input bits that $\rho_{n}^{(2, k)}$ maps to $*$ are set to $0 / 1$ by $\rho_{n}^{(3, k)}$ (where $\delta \in(0,1)$ was fixed in Definition 5).

Our goal will be to show that a nonzero amount of probability mass is assigned to restrictions ρ_{n}^{\prime} avoiding all events. We start by individually bounding the probability of each of these events.

Lemma 21 ($X_{0, k}$ is unlikely). For any $n>N, k>K$:

$$
\begin{equation*}
\mathbb{P}\left(X_{0, k}\right) \leq \exp \left(-\frac{\delta^{2} q(1-2 \eta) C n}{3}\right) \tag{18}
\end{equation*}
$$

Proof. Since $\rho_{n}^{(2, k)}$ had $\geq(1-2 \eta)$ Cn unrestricted input bits for $n>N$, this follows by a Chernoff bound Mitzenmacher and Upfal, 2017, Theorem 4.4).

Second, we show that the probability of $X_{i, h, k}^{(z)}(i=1,2, \ldots, n, h=1, \ldots, H)$ decays exponentially in k.
Lemma $22\left(X_{i, h, k}^{(z)}\right.$ is unlikely). If $((h, i), z)$ is (k, ρ)-unsatisfied, then

$$
\begin{equation*}
\mathbb{P}\left(X_{i, h, k}^{(z)}\right) \leq\left(1-(q / 2)^{c}\right)^{\frac{k}{c^{2} / c}} \tag{19}
\end{equation*}
$$

for each $i=1,2, \ldots, n$ and $h=1, \ldots, H$.

Proof. Let $Y_{i, h, z, k}^{t}(t=1, \ldots, k)$ be the event that the layer- 0 activation $y_{\substack{\left.j_{i} h, i, \mathrm{z}, \mathrm{p}^{(2)}\right)}}^{(0)}$ is not fixed by $\rho^{(3, k)}$ to

$$
\begin{equation*}
\arg _{q \in V_{\mathrm{p}}^{(2, k)}}\left(j_{\left.i_{i} h, i, z \mathrm{p}^{(2)}\right)}\right) \max f_{1, h}^{a t t}(z, q) \tag{20}
\end{equation*}
$$

Note that

$$
\begin{equation*}
X_{i, h}^{(z)}=\bigcap_{t=1}^{k} Y_{i, h}^{t} \tag{21}
\end{equation*}
$$

We have

$$
\begin{equation*}
\mathbb{P}\left(Y_{i, h}^{s}\right) \leq 1-(q / 2)^{c} \in(0,1) \tag{22}
\end{equation*}
$$

Any $Y_{i, h, z}^{s}$ can be statistically dependent on at most

$$
\begin{equation*}
c \cdot \frac{1}{\eta} c / C=\frac{1}{\eta} c^{2} / C \tag{23}
\end{equation*}
$$

other events $Y_{i, h, z}^{s^{\prime}}$, because each $\rho^{(2, k)}$-free input bit serves as an input to at most

$$
\begin{equation*}
\frac{1}{\eta} c / C \tag{24}
\end{equation*}
$$

layer-0 heads (Lemma 6). Therefore, there is a set of

$$
\begin{equation*}
\geq \frac{k}{\frac{1}{\eta} c^{2} / C} \tag{25}
\end{equation*}
$$

independent events among these. Call these $Y_{i, h}^{t_{1}}, \ldots, Y_{i, h}^{\frac{k}{\pi^{c^{c} / C}}}$. Then

$$
\begin{equation*}
X_{i, h}^{(z)} \subseteq \bigcap_{s=1}^{\frac{k}{\pi c^{2} / C}} Y_{i, h}^{t_{s}} \tag{26}
\end{equation*}
$$

and thus

$$
\begin{equation*}
\mathbb{P}\left(X_{i, h}^{(z)}\right) \leq \prod_{s=1}^{\frac{k}{\frac{1}{c^{2} / c}}} \mathbb{P}\left(Y_{i, h}^{t_{s}}\right) \leq\left(1-(q / 2)^{c}\right)^{\frac{k}{\frac{1}{c^{2} / C}}} \tag{27}
\end{equation*}
$$

for each $i=1,2, \ldots, n$ and $h=1, \ldots, H$.
Lemma 23. There are N, K such that, for each $n>N, k>K$, the probability of avoiding all events

$$
\begin{equation*}
\left\{X_{0, k}\right\} \cup\left\{X_{i, h, k}^{(z)}:((h, i), z) \text { is }\left(k, \rho^{(2, k)}\right) \text {-unsatisfied }\right\} \tag{28}
\end{equation*}
$$

is strictly greater than zero.
Proof. We apply the Lovász Local Lemma (Mitzenmacher and Upfal, 2017, Theorem 6.17). Each event $X_{i, h, k}^{(z)}$ is statistically independent of the set

$$
\begin{equation*}
\left\{X_{\left(j, h^{\prime}, k\right)}^{\left(z^{\prime}\right)}:\left(k, \rho^{(2, k)}\right) \text {-unsatisfied tuples }\left(j, h^{\prime}, z^{\prime}\right) \text { and }(i, h, z) \text { are not }\left(k, \rho^{(2, k)}\right) \text {-neighbors }\right\} \tag{29}
\end{equation*}
$$

The complement of this set has cardinality

$$
\begin{equation*}
\leq f=\frac{2^{2 c}}{\eta} c^{2} k^{2} H / C \tag{30}
\end{equation*}
$$

as concluded in Corollary 18 . Set $A:=\frac{1}{k^{2}}, B:=\frac{1}{2}$. The number of events $X_{i, h}^{(z)}$ is bounded by $2^{c} H n$. By the Lovász Local Lemma, it is sufficient show the following:

$$
\begin{align*}
& \mathbb{P}\left(X_{i, h}^{(z)}\right) \leq A(1-B)(1-A)^{f} \tag{31}\\
& \mathbb{P}\left(X_{0}\right) \leq B(1-A)^{c^{c} H n} \tag{32}
\end{align*}
$$

The Lovász Local Lemma then guarantees that there is some input restriction $\rho_{n}^{(3)}$ that avoids all events $\left\{X_{0}\right\} \cup\left\{X_{i, h, k}^{(z)}: i, h, z\right\}$. For 31, we need

$$
\begin{equation*}
D \leq A^{1 / k}(1-B)^{1 / k}(1-A)^{f / k} \tag{33}
\end{equation*}
$$

where $D=\left(1-(q / 2)^{c}\right)^{\frac{1}{\pi^{c} / c}} \in(0,1)$. For the first term on the right,

$$
\lim _{k \rightarrow \infty} A^{1 / k}=\lim _{k \rightarrow \infty} \exp \left(-\log \left(k^{2}\right) / k\right)=1
$$

Also, $\lim _{k \rightarrow \infty}(1-A)^{f / k}$ equals

$$
\lim _{k \rightarrow \infty}\left(1-\frac{1}{k^{2}}\right)^{\frac{2^{2 c} c}{\eta} c^{2} k H / C}=\lim _{k \rightarrow \infty}\left(1-\frac{E^{2}}{k^{2}}\right)^{k}=1
$$

for $E:=\frac{2^{2 c}}{\eta} c^{2} H / C$. So, if we choose k large enough (independently of n), the RHS of 33 can be made arbitrarily close to 1 , in particular, greater than D. In order to also satisfy (32), we need

$$
\exp \left(-\delta^{2} q(1-2 \eta) C / 3\right) \leq B^{1 / n}(1-A)^{2^{c} H}
$$

which holds for n, k large enough (again, choosing k independent of n).
Corollary 24. There are K, N such that for $n>N, k>K$, for any $\rho_{n}^{(3, k)}$ provided by Lemma 23 we have

$$
\left|\left\{i \leq n: \rho_{n}^{(3, k)}(i)=*\right\}\right| \geq C^{\prime} n
$$

Proof. We have

$$
\left|\left\{i \leq n: \rho_{n}^{(3, k)}(i)=*\right\}\right| \geq(1-2 \eta) \cdot(1-(1+\delta) q) C n
$$

for all sufficiently large n. The claim follows from the choices in Definition 5
Proof of the Depth Reduction Lemma. After applying $\rho_{n}^{(3, k)}$, every layer-1 head $b_{j, 1, h}$ depends at most on

1. the c input bits feeding into $y_{j}^{(0)}$, and
2. for each $h=1, \ldots, H, z \in V_{\boldsymbol{\rho}^{(3, k)}}(j) \subseteq V_{\boldsymbol{\rho}^{(2, k)}}(j)$ such that $((h, j), z)$ is $\left(k, \rho^{(2, k)}\right)$-satisfied, at most $\leq c k$ input bits by the definition of "satisfied".
3. for each $h=1, \ldots, H, z \in V_{\rho^{(3, k)}}(j) \subseteq V_{\rho^{(2, k)}}(j)$ such that $((h, j), z)$ is $\left(k, \rho^{(2, k)}\right)$-unsatisfied, the input bits that the tuple k-depends on, of which there are at most $\leq c k$ by Lemma 13 (Stated differently, every tuple is ($k, \rho^{(3, k)}$)-satisfied.)

Thus, each layer-1 activation $y_{j}^{(1)}$ only depends on $\leq c \cdot\left(2^{c} k H+1\right)$ input bits.
We can thus remove layer 0 , convert layer- 1 activations $y_{j}^{(1)}$ into layer- 0 activations $y_{j}^{(0)}$, and obtain a $\left(c \cdot\left(2^{c} k H+1\right)\right)$-transformer performing the same computation as before when $\rho^{(3)}$ is applied.

S2 Missing Detail in Soft Attention Proof

In the proof of Lemma 5 on Page 11, the inequality at the end of the first column has the form

$$
\begin{equation*}
\left\|b-b^{\prime}\right\|<\sum a_{w}\left\|y_{w}-y_{w}^{\prime}\right\| \tag{34}
\end{equation*}
$$

A term is missing: the RHS should be of the form

$$
\begin{equation*}
\left\|b-b^{\prime}\right\|<\sum a_{w}\left\|y_{w}-y_{w}^{\prime}\right\|+\sum\left|a_{w}-a_{w}^{\prime}\right| y_{w}^{\prime} \tag{35}
\end{equation*}
$$

The missing term is also small under the assumptions used in the paper.
First, y_{w}^{\prime} is bounded because $f^{a t t}$ and $f^{a c t}$ are Lipschitz functions, and the positional embeddings are assumed to be bounded. These assumptions are used in the $\mathrm{k}=0$ step of the proof of Lemma 5, and they are necessary for the proof to work.

Second, $\sum\left|a_{w}-a_{w}^{\prime}\right|$ is also in $\mathrm{O}(1 / \mathrm{n})$. The next page contains a calculation for this claim.

We want to show that

$$
\begin{equation*}
\sum_{u \neq i}\left|\hat{a}_{j, u}^{k, h}-\hat{a}_{j, u}^{k, h \prime}\right|=O(1 / n) \tag{1}
\end{equation*}
$$

To show this, we show that each term is $O\left(1 / n^{2}\right)$.
First, note $\hat{a}_{j, u}^{k, h} \in\left[\frac{\exp (-2 A)}{n-1}, \frac{\exp (2 A)}{n-1}\right]$ (the upper bound is given in the paper, the lower bound is analogous).

Also, for the unnormalized attention weights, $\left|a_{j, u}^{k, h}-a_{j, u}^{k, h \prime}\right| \leq \frac{Q}{n}$ for some constant Q depending on the parameter matrices and Lipschitz constant of $f^{a t t}$.

Let's fix all indices but u, and write

$$
\begin{align*}
c_{u} & :=\exp \left(a_{u}\right) \in[\exp (-A), \exp (A)] \tag{2}\\
d_{u} & :=\exp \left(a_{u}\right)-\exp \left(a_{u}^{\prime}\right) \tag{3}
\end{align*}
$$

Because $\left|a_{j, u}^{k, h}-a_{j, u}^{k, h_{\prime}}\right| \leq \frac{Q}{n}, a_{u}$ is bounded, and $\exp (\cdot)$ is continuous, therefore $\left|d_{u}\right| \in O\left(\frac{1}{n}\right)$.
Then

$$
\begin{align*}
\hat{a}_{u}-\hat{a}_{u} & =\frac{c_{u}}{\sum_{y} c_{y}}-\frac{c_{u}+d_{u}}{\sum_{y} c_{y}+d_{y}}=\frac{c_{u}\left(\sum_{y} c_{y}+d_{y}\right)-\left(c_{u}+d_{u}\right) \sum_{y} c_{y}}{\sum_{y} c_{y}\left(\sum_{y} c_{y}+d_{y}\right)}=\frac{c_{u} \sum_{y} d_{y}-d_{u} \sum_{y} c_{y}}{\sum_{y} c_{y}\left(\sum_{y} c_{y}+d_{y}\right)} \tag{4}\\
& \leq \frac{c_{u} \sum_{y}\left|d_{y}\right|+\frac{C}{n} \sum_{y} c_{y}}{\left(\sum_{y} c_{y}\right)^{2}} \leq \frac{\exp (A) C+\frac{C}{n} \sum_{y} c_{y}}{\left(\sum_{y} c_{y}\right)^{2}} \tag{5}
\end{align*}
$$

(for some constant C). Considering that $c_{u} \geq \exp (-A)$, therefore $\Sigma_{y} c_{y} \geq n \exp (-A)$, and this is bounded as

$$
\begin{equation*}
\leq \frac{\exp (A) C+\frac{C}{n} n \exp (A)}{n^{2} \exp (-2 A)}=O\left(\frac{1}{n^{2}}\right) \tag{6}
\end{equation*}
$$

Acknowledgments

Thanks for Gail Weiss, Will Merrill, Navin Goyal, and Satwik Bhattamishra for helpful discussion about the original paper.

References

Mitzenmacher, M. and Upfal, E. (2017). Probability and Computing. Cambridge University Press, Cambridge, 2nd edition.

