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Adjective Ordering

the big blue table VS the blue big table
the beautiful old house VS the old beautiful house

the delicious boiling curry VS the boiling delicious curry
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the big blue table VS the blue big table
the beautiful old house VS the old beautiful house

the delicious boiling curry VS the boiling delicious curry

Various generalizations have been offered

Inherentness (Whorf 1945)

Specificity (Sweet 1898, Ziff 1960)
Absoluteness (Sproat & Shih 1991)
Concept-Formability (Svenonius 2008)
Subjectivity (Hetzron 1978)

Scontras et al. (2017):

Subjectivity captures all
of these
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From Scontras et al. (2017)



. x1ao lii  huanping
small green vase

‘the small green vase’ (Sproat & Shih, 1991, 566)
. *1li X120 huanping

Mandarin Chinese



Research Question:

Can adjective ordering be explained in terms of
general principles of language use and
processing?



Empirical Question:

Are factors other than subjectivity relevant?



Mutual Information

PMI(Adj,Noun) = log P(Noun|Adj) - log P(Noun)



Mutual Information

PMI(Adj,Noun) = log P(Noun|Adj) - log P(Noun)

Probability that
Noun occurs, given
the modifier Adj



Mutual Information

PMI(Adj,Noun) = log P(Noun|Adj) - log P(Noun)

\

Probability that
Frequency of Noun

Noun occurs, given
the modifier Adj



Mutual Information

PMI(Adj,Noun) = log P(Noun]|Adj) - log P(Noun)

Quantifies degree to which words appear together more frequently
than expected at chance

Common measure of collocation (vanning and Schuetze 1999)



Mutual Information

PMI(Adj,Noun) = log P(Noun|Adj) - log P(Noun)

app|e car

house

banana — i [l

————

(PMIs computed from COCA, https.//www.english-corpora.org/coca/)



Mutual Information

PMI(Adj,Noun) = log P(Noun|Adj) - log P(Noun)

apple car
3.5
delicious
3.9 /
, 2 1.8 house
banana —




Mutual Information

Hypothesis:

Adjectives with higher mutual information with the noun tend to come
closer to the noun.



Corpus Study

BookCorpus:
11,038 English novels

74 Million sentences



Corpus Study

BookCorpus:

11,038 English novels

74 Million sentences

estimate MI, controlling for
existing ordering
preferences



Corpus Study

BookCorpus:

11,038 English novels

74 Million sentences

extract all occurrences of
“DET ADJ ADJ NOUN” estimate MI, controlling for

_ existing ordering
~ 4700 datapoints
preferences



Subjectivity

p=9.36-10""0
0.8

0.6

0.4

0.2

First Adjective Second Adjective



Mutual Information with Noun
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Relation of Ml and Subjectivity

Predict order of A, A, in logistic mixed-effects model from

1. PMI(A,, N) - PMI(A,, N)
2. Subj(A,) - Subj(A,)



Model Comparison (BIC)
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Model Comparison (BIC)

weaker 1700 p= 273. 10—10
I 1600

1500
1400
1300
1200

\ 1100
stronger 1000

model fit

Full Model  Only Subjectivity Only Mutual
Information

Subjectivity and Mutual Information independently impact ordering.



Mutual Information predicts Noun-Specific Effects:

new good luck international young people
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open curly braces
PMI 25 95

Subjectivity 0.38 0.40
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Goal:

Provide a model of adjective use that explains
effects of subjectivity and mutual information.



The Use of Adjectives

Adjectives can help pick out referents.



Click on the
yellow
comb.

Sedivy, Chambers,
and Tanenhaus
(1999)
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The Use of Adjectives

Adjectives can help pick out referents.

Adjectives can describe and comment on a referent.

What a nice Does not help pick out a referent.
dog.
f' 7 Speaker comments on referent.




Forrest looks at the massive crowd.
| see the door to the house open..., and in the yellow light | see Kate.
We look at the little animal faces, and we know they need a home.

The toes of animals tapped on the metal roof in the dark.
Abruptly, the beautiful face softened.

Telling the red blood to stop flowing.

Look at the little boy! from COCA (Davies, 2017)



Forrest looks at the massive crowd.

| see the door to the house open..., and in the yellow light | see Kate.

We loq

The to

Abrupt

Model will be centered around speakers
communicating descriptions and attitudes.

Telling the red blood to stop flowing.

from COCA (Davies, 2017)

Look at the little boy!



Modeling Approach

1. Formalize nonrestrictive use of adjectives

2. Define a rational Bayesian model of communication

3. Show how memory limitations lead effects of subjectivity and mutual
information

4. Evaluate on Corpus Data



Modeling Approach

1. Formalize nonrestrictive use of adjectives

2. Define a rational Bayesian model of communication

3. Show how memory limitations lead effects of subjectivity and mutual
information

4. Evaluate on Corpus Data






beautiful green car
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World state = Truth value assignment to the cells in this table
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Speakers mostly agree on objective judgments

More disagreement for more subjective judgments
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Modeling Approach

1. Formalize nonrestrictive use of adjectives

2. Define a rational Bayesian model of communication

3. Show how memory limitations lead effects of subjectivity and mutual
information

4. Evaluate on Corpus Data



Rational Communication: Speakers and Listeners

Formalize model in the framework of Bayesian pragmatics
(Franke 2008; Frank and Goodman, 2012)

I:)Iistener(Wlu) oc I:)prlor( ) 6u is true for speaker in w

Pspeaker(u) oc exp(a - I(u) = B -C(u))



Listener Model

Listener performs Bayesian reasoning to infer world state.

(wlu) o< P (W)

listener u is true for speaker in w

state of utterance
the world received



beautiful green car
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Rational Communication: Speakers and Listeners

Formalize model in the framework of Bayesian pragmatics
(Franke 2008; Frank and Goodman, 2012)
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Speaker Model

Speaker chooses utterance to optimize utility
(Franke 2008; Frank and Goodman 2012).

u) o< exp(a - I(u) - B -C(u)
7 \

Informativity of
utterance U’

speaker(

Cost of utterance



Speaker Model

u) o< exp(a - lu) = B -C(u))

speaker(

Typically: Reduction in the listener’s uncertainty about the
world State, measured in bits (e.g., Frank and Goodman, 2012; Goodman and

Stuhlmueller, 2013).
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Speaker Model

Speaker chooses utterance to optimize utility
(Franke 2008; Frank and Goodman 2012).

u) o< exp(a - I(u) = -C(u))

/

Informativity of
utterance U’

speaker(



Speaker Model

I:)speaker(u) oc exp(a ' |(LI) )

10%‘ 25 % ‘ 65 %

/ T I

I(U)=0 I(U) = 1 I(U) = 2

beautiful beautiful
Celr car green car




beautiful

green car ﬁ .
GREEN o

BEAUTIFUL

g (B

GREEN v
BEAUTIFUL ”

Informativity about = 2 bits
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Informativity about = 2 bits
L

Informativity about Q =1 bits

=1(U)
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green car

BEAUTIFUL
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BEAUTIFUL
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27

Informativity about = 2 bits

Informativity about ’ =1 bits

=1(U)

Cooperative speakers communicate knowledge
that generalizes to other people.




Speaker Model: Cost
u) o< exp(a - I(u) =  -C(u))

i

Cost of the utterance

speaker(



Speaker Model: Cost
I:)speaker(u) oc exp(a - I(u) = B -C(u))

7

C(u) = =log P(u)

Surprisal of the utterance

(cf. Bennett & Goodman, 2018; Peloquin et al
2019)



Speaker Model: Cost
u) o< exp(a - I(u) = § -C(u))

7

C(u) = =log P(u)

speaker(

We will assume no prior preference:

P(A,A,N)=PA A N)
1772 2™



Rational Communication: Speakers and Listeners

Formalize model in the framework of Bayesian pragmatics
(Franke 2008; Frank and Goodman, 2012)
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Rational Communication: Speakers and Listeners

Formalize model in the framework of Bayesian pragmatics
(Franke 2008; Frank and Goodman, 2012)

oC
Wllstener I:)prlor( ) 6u is true for speaker in w

v P o eaker(U) o< €xp(a - I(u) = B -C(u))

Informativity about

Informativity about ’



Rational Communication: Speakers and Listeners

P spearerlt) o €Xp(a - l(u) = B -C(u))

So far, no ordering preferences are predicted!

big green tree Identical Informativity
| and Cost
green big tree



Rational Communication: Speakers and Listeners

u) o< exp(a - I(u) = B -C(u))

speaker(

Proposal:

Memory limitations
In processing break
symmetry.



Memory Limitations
Firmly established as factor in language understanding

Classical example: Long dependencies harder to process

(e.g., Gibson, 1998; McElree, 2000; Lewis & Vasishth, 2005; Bartek et al., 2011;
Nicenboim, 2015)



Memory Limitations: Formal Model (rutrei and Levy, 2017)
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Memory Limitations: Formal Model (rutrei and Levy, 2017)

w W W W W W W

Assumption 1:

Previous words in the
input may be lost from
memory stochastically

Assumption 2:

Probability of loss L -|

increases as one goes ‘
further back in the

sequence.



Listener Model with
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Listener Model with
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Listener Model with
Memory Loss
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big green tree
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Listener Model with
Memory Loss

big green tree

?7? green tree T

big green tree
beautiful green tree

ugly green tree \ Rational listener
marginalizes over
possible

completions (Futrell &
Levy, 2017)




Listener Model with
Memory Loss

big green tree
beautiful green tree

=

BEAUTIFUL
BIG
GREEN

big green tree

R

A o 2




Listener Model with

Memory Loss
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Listener Model with
Memory Loss
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Listener able to generalize
better across persons




Prediction:

Assuming forgetful listener, placing subjective adjective
first has higher expected informativity under the
model.



Memory Loss in the Cost



Memory Loss in the Cost

A, - log P(A,)



Memory Loss in the Cost

A - log P(A,)

A, A, -log P(AJA.)



Memory Loss in the Cost

A1
A1 A2
?7? A N

- log P(A,)
- log P(A,|A,)
- log P(N|?? A,)

f

Will be smaller if
PMI(N, A,) is larger!



Our Proposed Model

Rational communication with Bayesian inference

u) o< exp(a - I(u) = B -C(u))

speaker(



Our Proposed Model
Rational communication with Bayesian inference
P peaier() € €Xp(a + I(u) = B C(u))
iIncluding reasoning about multiple speakers
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Our Proposed Model

Rational communication with Bayesian inference

I:>speaker(u) oc exp(a - [(u) = B -C(u))

iIncluding reasoning about multiple speakers

0 (4 o = ¢ 4 o
METAL v METAL v
GREEN v v GREEN v v
LARGE v oV LARGE v v

BEAUTIFUL | v v BEAUTIFUL v

and incremental, rational processing under memory limitations.

WWWWWWWL?W?WWWW

Assumption 1: Assumption 2: O
Previous words in the ~ Probability of loss ‘: :l
input may be lost from increases as one goes g

memory stochastically further back in the
sequence.
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Task: Predict adjective order in corpus data



Evaluation

Task: Predict adjective order in corpus data

good smooth blue

Model Parameters: round metal

e Kk(A) = 1 - subjectivity(A) mmmmhﬂ -
000 Hj-:-j faumess "

K(big) = O 2 K(metal)= 0.85




Evaluation

Task: Predict adjective order in corpus data

Model Parameters:

e K(A) = 1 -subjectivity(A)
e MI: from corpus analysis
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Evaluation

Task: Predict adjective order in corpus data

Model Parameters:

e K(A) = 1 -subjectivity(A)

e MI: from corpus analysis

e Other Parameters mfe.rre.d using Pspeaker(u) o exp(al - I(U) - B -C(u))
Bayesian Data Analysis in Pyro
(http://pyro.ai/)



Evaluation

Task: Predict adjective order in corpus data

Model Parameters: Evaluation Datasets

e K(A) = 1 -subjectivity(A)
e MI: from corpus analysis
e Other parameters inferred using

BayeSian Data AnaIySiS in Per Set from corpus ana|ysis
(http://pyro.ai/) (~ 4,700 examples)




Evaluation

Task: Predict adjective order in corpus data

Model Parameters: Evaluation Datasets
e K(A) = 1 -subjectivity(A) Unseen data set x
e MI: from corpus analysis (~ 10,000 examples)

e Other parameters inferred using

BayeSian Data AnaIySiS in Per Set from corpus ana|ysis
(http://pyro.ai/) (~ 4,700 examples)



Accuracy

100

® Original Data B Unseen Data

95
90
85
80

Subjectivity+Ml Model
Logistic Regression




Languages with Postnominal Adjectives

l-kitaabu 1-’axdaru s-sayiiru
the-book the-green the-small

‘the little green book’ (Fassi Fehri, 1999, 107)

Standard Arabic



Languages with Postnominal Adjectives

Subijectivity-based ordering reported for

e Arabic (Kachakeche & Scontras, 2020)
o Tagalog (Samonte & Scontras, 2019)

Similarly for many other languages (Dixon, 1982; Hetzron, 1978; Sproat & Shih,1991).



Languages with Postnominal Adjectives
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Languages with Postnominal Adjectives
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Languages with Postnominal Adjectives

tree green
e
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Listener able to generalize
better across persons



Languages with Postnominal Adjectives
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Languages with Postnominal Adjectives

N - log P(N)

N A - log P(A,IN)

7 A A, / -log P(A,|?? A.)

Will be lower when
PMI(A,, N) is higher.




Languages with Postnominal Adjectives

MI with Noun (in bits)

English Arabic

4 -

Mutual
Information
With Noun 2. .I
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Subjectivity and Ml independently impact adjective ordering.



Discussion
Subjectivity and Ml independently impact adjective ordering.

Provided model of adjective ordering integrating standard
Bayesian reasoning

Pspeaker(u) oc exp(a - I(u) = B -C(u))
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Discussion
Subjectivity and Ml independently impact adjective ordering.

Provided model of adjective ordering integrating standard

Bayesian reasoning with incremental processing under
memory limitations

N
? W ? W W W W

Assumption 1: Assumption 2: O
Previous words in the ~ Probability of loss ‘—; :I
input may be lost from increases as one goes

memory stochastically further back in the g
sequence.
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Discussion

Subjectivity and Ml independently impact adjective ordering.

Provided model of adjective ordering integrating standard
Bayesian reasoning with incremental processing under
memory limitations, achieving 96% accuracy on corpus data.

100
B Original Data ® Unseen Data

95
90
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Subjectivity+MI
Logistic Regression

Accuracy

Model



Discussion

Subjectivity and Ml independently impact adjective ordering.

Provided model of adjective ordering integrating standard
Bayesian reasoning with incremental processing under
memory limitations, achieving 96% accuracy on corpus data.

Suggests that adjective ordering can be explained by general principles
of human communication and language processing.



Discussion

Subjectivity and Ml independently impact adjective ordering.

Provided model of adjective ordering integrating standard
Bayesian reasoning with incremental processing under
memory limitations, achieving 96% accuracy on corpus data.

Suggests that adjective ordering can be explained by general principles
of human communication and language processing.

Subjective material tends to appear at periphery of phrases and clauses
(Traugott, 2010).

Future Research: Test our model on other types of subjective content.



Related Account: Simoni¢ 2018, Franke et al., 2019: Scontras et al., 2019.
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Related Account: Simoni¢ 2018, Franke et al., 2019: Scontras et al., 2019.

Their model: Our model:

Grounded in reference resolution Grounded in nonrestrictive usage
Predicts that conjunction Centered around incremental
weakens/eliminates the effect processing aiming to be compatible
(Rosales & Scontras, 2019; Scontras et with experimental evidence on

al., 2020) processing

Accounts for MI effect in addition to
Subjectivity effect
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Mutual Information in Adverb Order

frankly > fortunately > allegedly > probably > once/then > perhaps > wisely >
usually > already > no longer > always > completely > well

(Cinque 1999, p. 34)
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Predict order of pairs Adverb, Adverb,, in corpus using logistic regression
from

1. Mutual Information: pmi(Adverb1, Verb) - pmi(Adverb2, Verb)
2. Ranks of adverbs in the hierarchy

frankly > fortunately > allegedly > probably > once/then > perhaps > wisely >
usually > already > no longer > always > completely > well

(Cinque 1999, p. 34)
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Conclusion

Subjectivity and Ml independently impact adjective ordering.
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Conclusion

Subjectivity and Ml independently impact adjective ordering.

Proposed model of adjective ordering integrating Bayesian
reasoning with incremental processing under memory limitations.
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Proposed model of adjective ordering integrating Bayesian
reasoning with incremental processing under memory limitations.

Suggest that adjective ordering can be explained by general
principles of human communication and language processing.



Conclusion

Subjectivity and Ml independently impact adjective ordering.

Proposed model of adjective ordering integrating Bayesian
reasoning with incremental processing under memory limitations.

Suggest that adjective ordering can be explained by general
principles of human communication and language processing.

Mutual Information predicts
order in language more generally ey

between Adverb

0.8
A actively 0.6
B . closely
a‘w&g/w 5 \ 0.4
L 0.2
0.0
]

Average Mutual Information between Adverb and Verb



Thank you!



