
Understanding Architectural Constraints on LLM
Reasoning Abilities

Michael Hahn

NeurIPS Workshop Foundations of LLM Reasoning

Can LLMs Track States?

1cf. Kim & Schuster, ACL 2023; Liu et al, NeurIPS 2023; Merrill et al, ICML 2025; Grazzi et al, ICLR 2025; and others

Mary
Josh

Kim

Ruth

Paul

1cf. Kim & Schuster, ACL 2023; Liu et al, NeurIPS 2023; Merrill et al, ICML 2025; Grazzi et al, ICLR 2025; and others

Can LLMs Track States?

Mary
Josh

Kim

Ruth

novel

Paul

1cf. Kim & Schuster, ACL 2023; Liu et al, NeurIPS 2023; Merrill et al, ICML 2025; Grazzi et al, ICLR 2025; and others

Can LLMs Track States?

Josh

Ruth

Mary

Kim

novel

Paul

1cf. Kim & Schuster, ACL 2023; Liu et al, NeurIPS 2023; Merrill et al, ICML 2025; Grazzi et al, ICLR 2025; and others

Can LLMs Track States?

Josh

Ruth

Mary

Kim

novel

Paul

1cf. Kim & Schuster, ACL 2023; Liu et al, NeurIPS 2023; Merrill et al, ICML 2025; Grazzi et al, ICLR 2025; and others

Can LLMs Track States?

Josh

Ruth

Mary

Kim

novel

Paul

1cf. Kim & Schuster, ACL 2023; Liu et al, NeurIPS 2023; Merrill et al, ICML 2025; Grazzi et al, ICLR 2025; and others

Can LLMs Track States?

Josh

Ruth
novel

Mary

Kim

Paul

1cf. Kim & Schuster, ACL 2023; Liu et al, NeurIPS 2023; Merrill et al, ICML 2025; Grazzi et al, ICLR 2025; and others

Can LLMs Track States?

Josh

Ruth
novel

Mary

Kim

Paul

1cf. Kim & Schuster, ACL 2023; Liu et al, NeurIPS 2023; Merrill et al, ICML 2025; Grazzi et al, ICLR 2025; and others

Can LLMs Track States?

Josh

Ruth
novel

Mary

Kim

Paul

Answer: Kim has the encyclopedia.

1cf. Kim & Schuster, ACL 2023; Liu et al, NeurIPS 2023; Merrill et al, ICML 2025; Grazzi et al, ICLR 2025; and others

Can LLMs Track States?

Josh

Ruth
novel

Answer: Kim has the encyclopedia.
Mary

Kim

Paul

Answer: Kim has the encyclopedia.

ChatGPT-5 Instant, Aug 31, 2025.

1cf. Kim & Schuster, ACL 2023; Liu et al, NeurIPS 2023; Merrill et al, ICML 2025; Grazzi et al, ICLR 2025; and others

Can LLMs Track States?

1

Josh

Ruth
novel

Answer: Kim has the encyclopedia.
Mary

Kim

Paul

Answer: Kim has the encyclopedia.

1

Number of Transactions

A
cc

ur
ac

y

0

0.5

5 10 150

Llama-3

GPT-4

Mistral
Qwen

straight answer, no CoT
Models: gpt-4o-2024-08-06,
meta-llama/Llama-3.3-70B-Instruct-Turbo,
mistralai/Mistral-7B-Instruct-v0.3,
Qwen/Qwen2.5-72B-Instruct-Turbo

Can LLMs Track States?

1

correct!ChatGPT-5 Instant, Aug 31, 2025.

1

correct!ChatGPT-5 Instant, Aug 31, 2025.

Number of Transactions

To
ke

ns

3000

0

2000

5 30 400 10

LlaMa-31000

Deepseek-R1

GPT-5

Qwen

Models:
gpt-5-mini-2025-08-07,
meta-llama/Llama-3.3-70B-Instruct-Turbo,
deepseek-ai/DeepSeek-R1-Distill-Llama-70B,
Qwen/Qwen2.5-72B-Instruct-Turbo

1

Basic Algorithmic
Abilities

High-level Reasoning
Abilities

1-step CoT

2

Basic Algorithmic
Abilities

High-level Reasoning
Abilities

1-step CoT

2

Basic Algorithmic
Abilities

High-level Reasoning
Abilities

1-step CoT

Which abilities can
transformers learn?

2

Basic Algorithmic
Abilities

High-level Reasoning
Abilities

1-step CoT

How costly is
reasoning?

Which abilities can
transformers learn?

2

Basic Algorithmic
Abilities

High-level Reasoning
Abilities

1-step CoT

How costly is
reasoning?

Which abilities can
transformers learn?

2

Yana Veitsman*, Mayank Jobanputra*, Yash Sarrof, Vera Demberg, Ellie Pavlick, Michael Hahn

*equal contribution

ICLR 2025

3

NeurIPS 2025

 0 1 1 0 PARITY

4

 0 1 1 0 PARITY

even

4

 0 1 1 0 PARITY

odd

4

 0 1 1 0 PARITY

even

4

 0 1 1 0 PARITY

even

4

% 0 1 1 0 $ PARITY

Transformer

even

4

BOS SEP

% 0 1 1 0 $ even @ PARITY

4

Transformer

BOS SEP EOS

% 0 1 1 0 $ even @ PARITY

If we train transformer at
lengths ≤ N, …

4

Transformer

% 0 1 1 0 1 1 1 0 1 $

does it perform
correctly at length 2N?

If we train transformer at
lengths ≤ N, …

4

Transformer

% 0 1 1 0 1 1 1 0 1 $ even @

does it perform
correctly at length 2N?

If we train transformer at
lengths ≤ N, …

4

Transformer

Not for
this task!

Related results: Bhattamishra et al 2020; Anil et al 2022; Zhou et al 2024. 5

Not for
this task!

Related results: Bhattamishra et al 2020; Anil et al 2022; Zhou et al 2024. 5

% a b b a $ COPY

Transformer

6

% a b b a $ COPY

a

6

Transformer

% a b b a $ a COPY

b

6

Transformer

% a b b a $ a b COPY

b

6

Transformer

% a b b a $ a b b COPY

a

6

Transformer

% a b b a $ a b b a COPY

@

6

Transformer

% a b b a $ a b b a @ COPY

6

Transformer

% a b b a $ a b b a @ COPY

6

Transformer

% a b b a $ a b b a @ COPY

If we train transformer at
lengths ≤ N, …

6

Transformer

% b a b b a b b b a $

does it perform
correctly at length 2N?

If we train transformer at
lengths ≤ N, …

6

Transformer

% b a b b a b b b a $ b a b b a b b b a @

does it perform
correctly at length 2N?

If we train transformer at
lengths ≤ N, …

6

Transformer

Not for
this task!

Related results: Zhou et al 2024 ICLR; Jelassi et al 2024 ICML; Kazemnejad et al 2023 NeurIPS.7

Not for
this task!

Related results: Zhou et al 2024 ICLR; Jelassi et al 2024 ICML; Kazemnejad et al 2023 NeurIPS.7

% u r s z $ u r s z @ COPY UNIQUE

Transformer

but for many
other tasks, it
works!

8

% u r s z $ u r s z @ COPY UNIQUE

but for many
other tasks, it
works!

Related results: Zhou et al 2024
ICLR; Jelassi et al 2024 ICML.8

Transformer

On which tasks do transformers length-generalize?

9

Zhou et al 2024, ICLR 9

RASP-L Conjecture (paraphrased):
Transformers length-generalize on problems with

simple programs in the RASP-L language.

Zhou et al 2024, ICLR 9

Challenge: RASP-L hasn’t been formalized. Expressiveness not understood.

RASP-L Conjecture (paraphrased):
Transformers length-generalize on problems with

simple programs in the RASP-L language.

Zhou et al 2024, ICLR 9

Challenge: RASP-L hasn’t been formalized. Expressiveness not understood.

Our First Contribution: Formalize it based on C-RASP.

C-RASP: Yang&Chiang 2024, COLM

RASP-L Conjecture (paraphrased):
Transformers length-generalize on problems with

simple programs in the RASP-L language.

9

Binary Majority

10

% 0 0 1 1 0 1 1 1 0 $

C-RASP: Yang&Chiang 2024, COLM

Binary Majority

10

% 0 0 1 1 0 1 1 1 0 $

C-RASP: Yang&Chiang 2024, COLM

Binary Majority

10

% 0 0 1 1 0 1 1 1 0 $ T @

C-RASP: Yang&Chiang 2024, COLM

% 0 0 1 1 0 1 1 1 0 $

Binary Majority

10C-RASP: Yang&Chiang 2024, COLM

% 0 0 1 1 0 1 1 1 0 $

Binary Majority

10C-RASP: Yang&Chiang 2024, COLM

% 0 0 1 1 0 1 1 1 0 $

Binary Majority

10

0 0C1(i)

running count of 1s

C-RASP: Yang&Chiang 2024, COLM

% 0 0 1 1 0 1 1 1 0 $

Binary Majority

10

0 0 0 C1(i)

running count of 1s

C-RASP: Yang&Chiang 2024, COLM

% 0 0 1 1 0 1 1 1 0 $

Binary Majority

10

0 0 0 1C1(i)

running count of 1s

C-RASP: Yang&Chiang 2024, COLM

% 0 0 1 1 0 1 1 1 0 $

Binary Majority

10

0 0 0 1 2C1(i)

running count of 1s

C-RASP: Yang&Chiang 2024, COLM

% 0 0 1 1 0 1 1 1 0 $

Binary Majority

10

0 0 0 1 2 2C1(i)

running count of 1s

C-RASP: Yang&Chiang 2024, COLM

% 0 0 1 1 0 1 1 1 0 $

Binary Majority

10

0 0 0 1 2 2 3C1(i)

running count of 1s

C-RASP: Yang&Chiang 2024, COLM

% 0 0 1 1 0 1 1 1 0 $

Binary Majority

10

0 0 0 1 2 2 3 4C1(i)

running count of 1s

C-RASP: Yang&Chiang 2024, COLM

% 0 0 1 1 0 1 1 1 0 $

Binary Majority

10

0 0 0 1 2 2 3 4 5C1(i)

running count of 1s

C-RASP: Yang&Chiang 2024, COLM

% 0 0 1 1 0 1 1 1 0 $

Binary Majority

10

0 0 0 1 2 2 3 4 5 5C1(i)

running count of 1s

C-RASP: Yang&Chiang 2024, COLM

% 0 0 1 1 0 1 1 1 0 $

Binary Majority

10

0 0 0 1 2 2 3 4 5 5 5C1(i)

running count of 1s

C-RASP: Yang&Chiang 2024, COLM

% 0 0 1 1 0 1 1 1 0 $

Binary Majority

10

0 0 0 1 2 2 3 4 5 5 5

0

C1(i)

C0(i)

running count of 0s

C-RASP: Yang&Chiang 2024, COLM

% 0 0 1 1 0 1 1 1 0 $

Binary Majority

10

0 0 0 1 2 2 3 4 5 5 5

0 1

C1(i)

C0(i)

running count of 0s

C-RASP: Yang&Chiang 2024, COLM

% 0 0 1 1 0 1 1 1 0 $

Binary Majority

10

0 0 0 1 2 2 3 4 5 5 5

0 1 2

C1(i)

C0(i)

running count of 0s

C-RASP: Yang&Chiang 2024, COLM

% 0 0 1 1 0 1 1 1 0 $

Binary Majority

10

0 0 0 1 2 2 3 4 5 5 5

0 1 2 2 2 3

C1(i)

C0(i)

running count of 0s

C-RASP: Yang&Chiang 2024, COLM

% 0 0 1 1 0 1 1 1 0 $

Binary Majority

10

0 0 0 1 2 2 3 4 5 5 5

0 1 2 2 2 3 3 3 3 4

C1(i)

C0(i)

running count of 0s

C-RASP: Yang&Chiang 2024, COLM

% 0 0 1 1 0 1 1 1 0 $

Binary Majority

10

0 0 0 1 2 2 3 4 5 5 5

0 1 2 2 2 3 3 3 3 4 4

C1(i)

C0(i)

running count of 0s

C-RASP: Yang&Chiang 2024, COLM

% 0 0 1 1 0 1 1 1 0 $

Binary Majority

10

0 0 0 1 2 2 3 4 5 5 5

0 1 2 2 2 3 3 3 3 4 4

 F F F F

C1(i)

C0(i)

M(i)

compare them
C-RASP: Yang&Chiang 2024, COLM

% 0 0 1 1 0 1 1 1 0 $

Binary Majority

10

0 0 0 1 2 2 3 4 5 5 5

0 1 2 2 2 3 3 3 3 4 4

T F F F T F T T T T T

C1(i)

C0(i)

M(i)

compare them
C-RASP: Yang&Chiang 2024, COLM

% 0 0 1 1 0 1 1 1 0 $ T @

Binary Majority

10

0 0 0 1 2 2 3 4 5 5 5

0 1 2 2 2 3 3 3 3 4 4

T F F F T F T T T T T

C1(i)

C0(i)

M(i)

C-RASP: Yang&Chiang 2024, COLM

% 0 0 1 1 0 1 1 1 0 $ T @

Binary Majority

10

0 0 0 1 2 2 3 4 5 5 5

0 1 2 2 2 3 3 3 3 4 4

T F F F T F T T T T T

C1(i)

C0(i)

M(i)

C-RASP: Yang&Chiang 2024, COLM

% u r s z $ u …
Unique Copy

11

collect
immediately
preceding
token

% u r s z $ u …
Unique Copy

11

prev = u 0 0 1 0 0 0 0 collect
immediately
preceding
token

% u r s z $ u …
Unique Copy

11

prev = u 0 0 1 0 0 0 0

prev = r 0 0 0 1 0 0 0
collect
immediately
preceding
token

% u r s z $ u …
Unique Copy

11

prev = u 0 0 1 0 0 0 0

prev = r

prev = s

0 0 0 1 0 0 0

0 0 0 0 1 0 0

collect
immediately
preceding
token

% u r s z $ u …
Unique Copy

11

prev = u 0 0 1 0 0 0 0

prev = r

prev = s

prev = z

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

collect
immediately
preceding
token

% u r s z $ u …
Unique Copy

11

prev = u 0 0 1 0 0 0 0

prev = r

prev = s

prev = z

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

ur 0 0 1 1 1 1 1
collect
bigram
statistics

% u r s z $ u …
Unique Copy

11

prev = u 0 0 1 0 0 0 0

prev = r

prev = s

prev = z

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

ur 0 0 1 1 1 1 1

rs 0 0 0 1 1 1 1 collect
bigram
statistics

% u r s z $ u …
Unique Copy

11

prev = u 0 0 1 0 0 0 0

prev = r

prev = s

prev = z

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

ur 0 0 1 1 1 1 1

rs 0 0 0 1 1 1 1
sz 0 0 0 0 1 1 1

collect
bigram
statistics

% u r s z $ u …
Unique Copy

11

prev = u 0 0 1 0 0 0 0

prev = r

prev = s

prev = z

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

ur 0 0 1 1 1 1 1

rs 0 0 0 1 1 1 1
sz 0 0 0 0 1 1 1
us 0 0 0 0 0 0 0

collect
bigram
statistics

% u r s z $ u …
Unique Copy

11

prev = u 0 0 1 0 0 0 0

prev = r

prev = s

prev = z

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

ur 0 0 1 1 1 1 1

rs 0 0 0 1 1 1 1
sz 0 0 0 0 1 1 1
us 0 0 0 0 0 0 0

... ...

collect
bigram
statistics

% u r s z $ u …
Unique Copy

11

prev = u 0 0 1 0 0 0 0

prev = r

prev = s

prev = z

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

ur 0 0 1 1 1 1 1

rs 0 0 0 1 1 1 1
sz 0 0 0 0 1 1 1
us 0 0 0 0 0 0 0

... ...

% u r s z $ u …
Unique Copy

11

prev = u 0 0 1 0 0 0 0

prev = r

prev = s

prev = z

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

ur 0 0 1 1 1 1 1
rs 0 0 0 1 1 1 1
sz 0 0 0 0 1 1 1
us 0 0 0 0 0 0 0

... ...

% u r s z $ u r
Unique Copy

11

prev = u 0 0 1 0 0 0 0

prev = r

prev = s

prev = z

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

ur 0 0 1 1 1 1 1
rs 0 0 0 1 1 1 1
sz 0 0 0 0 1 1 1
us 0 0 0 0 0 0 0

... ...

% u r s z $ u r
Unique Copy

11

prev = u 0 0 1 0 0 0 0 1

prev = r

prev = s

prev = z

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

ur 0 0 1 1 1 1 1 1

rs 0 0 0 1 1 1 1 1
sz 0 0 0 0 1 1 1 1
us 0 0 0 0 0 0 0 0

... ...

% u r s z $ u r
Unique Copy

11

prev = u 0 0 1 0 0 0 0 1

prev = r

prev = s

prev = z

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

ur 0 0 1 1 1 1 1 1

rs 0 0 0 1 1 1 1 1
sz 0 0 0 0 1 1 1 1
us 0 0 0 0 0 0 0 0

... ...

% u r s z $ u r s
Unique Copy

11

prev = u 0 0 1 0 0 0 0 1

prev = r

prev = s

prev = z

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

ur 0 0 1 1 1 1 1 1

rs 0 0 0 1 1 1 1 1
sz 0 0 0 0 1 1 1 1
us 0 0 0 0 0 0 0 0

... ...

% u r s z $ u r s z $
Unique Copy

11

prev = u 0 0 1 0 0 0 0 1 0 0 0

prev = r

prev = s

prev = z

0 0 0 1 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0 0 1 0

0 0 0 0 0 1 0 0 0 0 1

ur 0 0 1 1 1 1 1 1 1 1 1

rs 0 0 0 1 1 1 1 1 1 1 1
sz 0 0 0 0 1 1 1 1 1 1 1
us 0 0 0 0 0 0 0 0 0 0 0

... ...

% u r s z $ u r s z @
Unique Copy

check
preceding

token

11

% u r s z $ u r s z @
Unique Copy

collect all
bigram

statistics

11

% u r s z $ u r s z @
Unique Copy

use bigram
statistics to

output next token

11

% u r s z $ u r s z $

11

prev = u 0 0 1 0 0 0 0 1 0 0 0

prev = r

prev = s

prev = z

0 0 0 1 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0 0 1 0

0 0 0 0 0 1 0 0 0 0 1

ur 0 0 1 1 1 1 1 1 1 1 1

rs 0 0 0 1 1 1 1 1 1 1 1
sz 0 0 0 0 1 1 1 1 1 1 1
us 0 0 0 0 0 0 0 0 0 0 0

... ...

Unique Copy

C-RASP[periodic, local]

Try the C-RASP
simulator! (credit to
Alexander Koller)

12

check for symbols

C-RASP[periodic, local]

12

propositional logic

C-RASP[periodic, local]

12

C-RASP[periodic, local]

checking position

12

compare
counts

C-RASP[periodic, local]

12

count how many preceding
positions j satisfy a property

C-RASP[periodic, local]

12

count arithmetic

C-RASP[periodic, local]

12

C-RASP[periodic, local]

12

Operations from original C-RASP
definitions by Yang&Chiang 2024 (COLM).

C-RASP[periodic, local]

12

Operations from original C-RASP
definitions by Yang&Chiang 2024 (COLM).

Newly added (or modified) positionally-aware
operations. Needed to model positional encodings.

12

% 0 1 1 0 $ even @
Parity

13

% 0 1 1 0 $ even @
Parity

13

% 0 1 1 0 $ even @
Parity

13

Same holds for more complex state tracking.

People exchanging books

% a a b a $ a a b a @Copy with Repetitions

rigorous proof via
communication complexity

14

Theorem (informal)

15

Theorem (informal)
Assume f is expressible in C-RASP.

15

Theorem (informal)
Assume f is expressible in C-RASP.

Choose a transformer Tn

15

Theorem (informal)
Assume f is expressible in C-RASP.

Choose a transformer Tn

- with context window 2n

15

context window of Tn

length 2n

Theorem (informal)
Assume f is expressible in C-RASP.

Choose a transformer Tn

- with context window 2n
- that exactly fits f on all inputs up to

length n

15

context window of Tn

training
data

length 2n

length n

Theorem (informal)
Assume f is expressible in C-RASP.

Choose a transformer Tn

- with context window 2n
- that exactly fits f on all inputs up to

length n

subject to a certain regularizer.

15

context window of Tn

training
data

length 2n

length n

Theorem (informal)
Assume f is expressible in C-RASP.

Choose a transformer Tn

- with context window 2n
- that exactly fits f on all inputs up to

length n

subject to a certain regularizer.

Then Tn matches f at all inputs up to length 2n,

15

context window of Tn

training
data

length 2n

length n

length 2n
test

examples

Theorem (informal)
Assume f is expressible in C-RASP.

Choose a transformer Tn

- with context window 2n
- that exactly fits f on all inputs up to

length n

subject to a certain regularizer.

Then Tn matches f at all inputs up to length 2n.

as long as n>N0(f).

15

context window of Tn

training
data

length 2n

length n

length 2n
test

examples

Disclaimer

● Idealized learning: all data is
available up to length n.
Not SGD

15

Disclaimer

● Idealized learning: all data is
available up to length n.
Not SGD

● Focus on APE / NoPE

15

Proof Idea

T1

16

Proof Idea

T1

training
data

length≤1 length≤2

test
examples

16

Proof Idea

T1

training
data

length≤2 length≤4

test
examples

 T2

16

Proof Idea

T1

training
data

length≤3 length≤6

test
examples

T2

T3

16

Proof Idea

T1

training
data

length≤4 length≤8

test
examples

T2

T3

T4

16

Proof Idea

T1

training
data

length≤5 length≤10

test
examples

T2

T3

T4

T5

16

Proof Idea

T1

training
data

length≤6 length≤12

test
examples

T2

T3

T4

T5

T6

16

Proof Idea

T1

training
data

length≤7 length≤14

test
examples

T2

T3

T4

T5

T6

T7

16

Proof Idea

T1

training
data

length≤8 length≤16

test
examples

T2

T3

T4

T5

T6

T7

T8 16

Proof Idea

T1

training
data

length n length 2n

test
examples

T2

T3

T4

T5

T6

T7

T8

Length Generalization

16

T1

T2

T3

T4

T5

T6

T7

T8 16

Proof Idea

f has C-RASP program

T1

T2

T3

T4

T5

T6

T7

T8 16

Proof Idea

f has C-RASP program

⇒ R(Ti) is bounded

T1

T2

T3

T4

T5

T6

T7

T8

A1

A2

A3

A2

A4

A3

A4

A4 16

Proof Idea

f has C-RASP program

⇒ R(Ti) is bounded

⇒ Ti only traverse a finite number of distinct
algorithms

T1

T2

T3

T4

T5

T6

T7

T8

A1

A2

A3

A2

A4

A3

A4

A4 16

Proof Idea

f has C-RASP program

⇒ R(Ti) is bounded

⇒ Ti only traverse a finite number of distinct
algorithms

⇒ each algorithm is either ruled out at some
n

T1

T2

T3

T4

T5

T6

T7

T8

A1

A2

A3

A2

A4

A3

A4

A4 16

Proof Idea

f has C-RASP program

⇒ R(Ti) is bounded

⇒ Ti only traverse a finite number of distinct
algorithms

⇒ each algorithm is either ruled out at some
n, or never ruled out

Proof Idea

T1

T2

T3

T4

T5

T6

T7

T8

f has C-RASP program

⇒ R(Ti) is bounded

⇒ Ti only traverse a finite number of distinct
algorithms

⇒ each algorithm is either ruled out at some
n, or never ruled out

⇒ after some N0(f), each Tn matches f

A1

A2

A3

A2

A4

A3

A4

A4 16
training

data

length n length 2n

test
examples

18

make each visual

18

— APE
- - NoPE

– in C-RASP
– not in C-RASP

18

— APE
- - NoPE

– in C-RASP
– not in C-RASP

18

— APE
- - NoPE

– in C-RASP
– not in C-RASP

18

works well with PE

fails with NoPE

— APE
- - NoPE

– in C-RASP
– not in C-RASP

18

— APE
- - NoPE

– in C-RASP
– not in C-RASP

18

— APE
- - NoPE

– in C-RASP
– not in C-RASP

18

— APE
- - NoPE

– in C-RASP
– not in C-RASP

addition
doesn’t
length
generalize
with standard
positional
encodings
(e.g. CITE)

18

— APE
- - NoPE

– in C-RASP
– not in C-RASP

19

(Non)Unique Copying in LLMs

% u r s z $ u r s z @ % a b b a $ a b b a @

19

Lorem-Ipsum style copying:

(Non)Unique Copying in LLMs

(Non)Unique Copying in LLMs

Lorem ad ipsum sed do ipsum sed aliqua

19

Lorem-Ipsum style copying:

Lorem ad ipsum sed do ipsum sed aliqua

Lorem…

19

Lorem-Ipsum style copying:

(Non)Unique Copying in LLMs

Lorem ad ipsum sed do ipsum sed aliqua

Lorem…

19

Lorem-Ipsum style copying:

(Non)Unique Copying in LLMs

Lorem ad ipsum sed do ipsum sed aliqua

Lorem ad…

19

Lorem-Ipsum style copying:

(Non)Unique Copying in LLMs

Lorem ad ipsum sed do ipsum sed aliqua

Lorem ad…

19

Lorem-Ipsum style copying:

(Non)Unique Copying in LLMs

Lorem ad ipsum sed do ipsum sed aliqua

Lorem ad ipsum …

19

Lorem-Ipsum style copying:

(Non)Unique Copying in LLMs

Lorem ad ipsum sed do ipsum sed aliqua

Lorem ad ipsum…

19

Lorem-Ipsum style copying:

(Non)Unique Copying in LLMs

Lorem ad ipsum sed do ipsum sed aliqua

Lorem ad ipsum…

19

Lorem-Ipsum style copying:

(Non)Unique Copying in LLMs

Lorem ad ipsum sed do ipsum sed aliqua

Lorem ad ipsum sed…

19

Lorem-Ipsum style copying:

(Non)Unique Copying in LLMs

Lorem ad ipsum sed do ipsum sed aliqua

Lorem ad ipsum sed…

19

Lorem-Ipsum style copying:

(Non)Unique Copying in LLMs

Lorem ad ipsum sed do ipsum sed aliqua

Lorem ad ipsum sed…

19

Lorem-Ipsum style copying:

(Non)Unique Copying in LLMs

Lorem ad ipsum sed do ipsum sed aliqua

Lorem ad ipsum sed…

19

Prediction: copying errors
should appear when bigram
transitions are ambiguous

Lorem-Ipsum style copying:

(Non)Unique Copying in LLMs

Lorem ad ipsum sed do ipsum sed aliqua

Lorem ad ipsum sed…

19

Prediction: copying errors
should appear when bigram
transitions are ambiguous

Lorem-Ipsum style copying:

(Non)Unique Copying in LLMs

On which tasks do transformers length-generalize?

21

Questions for Future Work

Q1: Quantitative bounds for length generalization.

21

Questions for Future Work

Q1: Quantitative bounds for length generalization.

How big is N0(f)? First steps:

21

Questions for Future Work

Q2: Beyond individual tasks

21

Questions for Future Work

Q2: Beyond individual tasks

How can circuit sharing between task help length generalization?

First steps:

21

Questions for Future Work

Q2: Beyond individual tasks

How can circuit sharing between task help length generalization?

Is there data that provably unlocks broad length generalization in reasoning?

First steps:

21

Basic Algorithmic
Abilities

High-level Reasoning
Abilities

1-step CoT

How costly is
reasoning?

Which abilities can
transformers learn?

22

Lower Bounds for Chain-of-Thought
Reasoning in Hard-Attention Transformers

Alireza Amiribavandpour, Xinting Huang, Mark Rofin, Michael Hahn

ICML 2025 23

% 0 1 1 0 $ e @

Without CoT

cf. Deng et al 2023

24

% 0 1 1 0 $ e @

Without CoT

cf. Deng et al 2023

24

very difficult

even in-distribution
generalization is notoriously

difficult on long strings

% 0 1 1 0 $ e @

Without CoT With CoT

% 0 1 1 0 $

cf. Deng et al 2023

24
e.g. Anil et al 2022

% 0 1 1 0 $ e @

Without CoT

% 0 1 1 0 $ e

cf. Deng et al 2023

With CoT

24

% 0 1 1 0 $ e @

Without CoT With CoT

% 0 1 1 0 $ e o

cf. Deng et al 2023

24

% 0 1 1 0 $ e @

Without CoT With CoT

% 0 1 1 0 $ e o e

cf. Deng et al 2023

24

% 0 1 1 0 $ e @

Without CoT With CoT

% 0 1 1 0 $ e o e e

cf. Deng et al 2023

24

% 0 1 1 0 $ e @

Without CoT With CoT

% 0 1 1 0 $ e o e e $ e @

cf. Deng et al 2023

24

% 0 1 1 0 $ e @

Without CoT With CoT

% 0 1 1 0 $ e o e e $ e @

cf. Deng et al 2023

24Number of Transactions

To
ke

ns

3000

0

2000

5 30 400 10

LlaMa-31000

Deepseek-R1

GPT-5

Qwen

% 0 1 1 0 $ e @

Without CoT With CoT

% 0 1 1 0 $ e o e e $ e @

cf. Deng et al 2023

How much of this extra cost is needed?

24

% 0 1 1 0 $ e @

Without CoT With CoT

% 0 1 1 0 $ e o e e $ e @

cf. Deng et al 2023

How much of this extra cost is needed?
Can CoTs be condensed?
Perhaps to length log N ? ?

24

% 0 1 1 0 $ e @

Without CoT With CoT

% 0 1 1 0 $ e o e e $ e @

cf. Deng et al 2023

How much of this extra cost is needed?
Can CoTs be condensed?
Perhaps to length log N ? ?

This paper:
Mostly, no

compression
possible.

24

Given an algorithmic problem, how does the CoT length
scale with input length N?

25

Given an algorithmic problem, how does the CoT length
scale with input length N?

Analogue to classical computational complexity, but for LLMs.

Our contribution: An Incompressibility Theorem for CoT.

25

Given an algorithmic problem, how does the CoT length
scale with input length N?

Analogue to classical computational complexity, but for LLMs.

Our contribution: An Incompressibility Theorem for CoT.

Results in this paper apply in the regime where numerical precision in
transformer is fixed while N → infty.

Equivalently to “unique hardmax attention”.

25

Upper Bound (prior work)

Theorem: If a Turing machine solves a problem in time T(n), then a
Transformer can solve with a CoT of length O(T(n)).

e.g. Perez et al 2019; Merrill and Sabharwal 2024; and others

26

Upper Bound (prior work)

Theorem: If a Turing machine solves a problem in time T(n), then a
Transformer can solve with a CoT of length O(T(n)).

But this bound is not tight!

Transformers solve many problems without CoT.

26

Our Lower Bound

27

Our Lower Bound
Theorem

length N length Ω(N)

correct
output“long” CoTinput

27

Our Lower Bound
Theorem

length N length Ω(N)

correct
output“long” CoTinput

length N length o(N)

correct
output“short” CoTinput

27

Our Lower Bound
Theorem

length N length Ω(N)

correct
output“long” CoTinput

length N length o(N)

correct
output“short” CoTinput

27

Our Lower Bound
Theorem

length o(N)

correct
output“short” CoT

length N

input

27

Our Lower Bound
Theorem

Example: PARITY

010110111001010110101001 (some CoT) “odd”

length o(N)

correct
output“short” CoT

27

input

Our Lower Bound
Theorem

1*0*****1****0*1******1*

correct
output“short” CoT

27

input

Our Lower Bound
Theorem

1*0*****1****0*1******1*

fixed to a
specific input

symbol

correct
output“short” CoT

27

input

Our Lower Bound
Theorem

1*0*****1****0*1******1*

fixed to a
specific input

symbol

remain
unassigned

correct
output“short” CoT

27

input

Our Lower Bound
Theorem

1*0*****1****0*1******1*

correct
output“short” CoT

27

100100011011001101110010
100110111000000100010111
110000001111100110101010
110111011111001101001010
100010011000000100111111
. . .

input

Our Lower Bound
Theorem

1*0*****1****0*1******1*

all matching
inputs generate
the same CoT

100100011011001101110010
100110111000000100010111
110000001111100110101010
110111011111001101001010
100010011000000100111111
. . .

correct
output

abbaab
abbaab
abbaab
abbaab
abbaab
. . .

“short” CoT

27

input

Our Lower Bound
Theorem

1*0*****1****0*1******1*

In words:

correct
output“short” CoT

27

input

Our Lower Bound
Theorem

1*0*****1****0*1******1*

In words:
Assume a (fixed-precision) transformer computes a CoT of length o(N).

correct
output“short” CoT

27

input

Our Lower Bound
Theorem

1*0*****1****0*1******1* (fixed independent of the * inputs)

In words:
Assume a (fixed-precision) transformer computes a CoT of length o(N).
One can fix a small fraction of input bits that makes the CoT constant on all
compatible input strings.

correct
output“short” CoT

27

input

Proof Idea

 * * * * *

27

correct
output

“short”
CoTinput

Proof Idea

27

correct
output

“short”
CoT

X1 X2 X3 X4 X5

. . .

input

 * * * * *

Proof Idea

27

correct
output

“short”
CoT

C1 C2X1 X2 X3 X4 X5

. . .
C1 C2

Output

input

 * * * * *

Proof Idea

27

correct
output

“short”
CoT

C1 C2X1 X2 X3 X4 X5

. . .
C1 C2

Output

input

 * * * * *

Set each input token i.i.d. to

with p=10%

with p=80%

with p=10%1

0

 *

Analogous to Random Restrictions
from Circuit Complexity.
Furst, Saxe, Sipser 1984

Håstad 1986

Proof Idea

27

correct
output

“short”
CoT

C1 C2X1 X2 1 0 X5

. . .
C1 C2

Output

input

 * * 1 0 *

Set each input token i.i.d. to

with p=10%

with p=80%

with p=10%1

0

 *

Analogous to Random Restrictions
from Circuit Complexity.
Furst, Saxe, Sipser 1984

Håstad 1986

Proof Idea

27

correct
output

“short”
CoT

C1 C2X1 X2 1 0 X5

. . .
C1 C2

Output

input

 * * 1 0 *

With Prob > 0, the transformer will
end up being “distracted” from all
free inputs.

Ignored when
producing CoT!

Proof Idea

27

correct
output

“short”
CoTinput

 * * 1 0 *

A General Lower Bound for CoT Length
Theorem

 * * 1 0 *

all matching
inputs generate
the same CoT

0 0 1 0 0
0 1 1 0 0
1 0 1 0 1
0 0 1 0 1

ab
ab
ab
ab
. . . 28

correct
output

“short”
CoTinput

A General Lower Bound for CoT Length
Example: AND function

 * * 1 0 *

0 0 1 0 0
0 1 1 0 0
1 0 1 0 1
0 0 1 0 1

ab
ab
ab
ab
. . . 28

correct
output

“short”
CoTinput

FALSE
FALSE
FALSE
FALSE
. . .

A General Lower Bound for CoT Length
Example: PARITY function

 * * 1 0 *

0 0 1 0 0
0 1 1 0 0
1 0 1 0 1
0 0 1 0 1

ab
ab
ab
ab
. . . 28

correct
output

“short”
CoTinput

ODD
EVEN
ODD
EVEN
. . .

State Tracking

Corollary:

Any CoT for PARITY has length Ω(N).

29

Empirical results of LLMs performing PARITY

Parity

We only include
traces leading to the
correct answer

29

Empirical results of LLMs performing PARITY

Parity

We only include
traces leading to the
correct answer

The growth of CoT
appears at least linear

29

ChatGPT4o
30

ChatGPT4o

See also:

for GPT4 zero shot: Dziri et al, NeurIPS 2023.

for: o3-mini: https://x.com/yuntiandeng/status/1889704768135905332

for DeepSeek R1: https://x.com/nouhadziri/status/1886423897567805835

actual: 278570135

incorrect

30

https://x.com/yuntiandeng/status/1889704768135905332
https://x.com/nouhadziri/status/1886423897567805835

Multiplication

Theorem:

Under a combinatorial conjecture, multiplying two N-bit numbers
requires a CoT of length Ω(N).

What is the upper bound?

30

“naive”
grade
school
algorithm:
Θ(N2) steps

30

Naive CoT requires Θ
(N2) steps.

Number of Bits

30

Θ(N2)

Ω(N)

Naive CoT requires
Θ(N2) steps.

CoT with Θ(N log N)
steps exists.

Number of Bits

30

Θ(N log N)

Θ(N2)

Ω(N)

Order Statistics

31

8 45 82 71 5 28 65

list of N integers

Order Statistics

31

8 45 82 71 5 28 65 -> 45

list of N integers median

Order Statistics

Theorem:

For MEDIAN, any CoT requires length 𝛺(N). This bound is attained.

31

8 45 82 71 5 28 65 -> 45

list of N integers median

Empirical results of LLMs performing MEDIAN

Order Statistics

We only include
traces leading to the
correct answer

the growth of CoT
appears at least linear

31

DAG reachability

32

graph
(DAG)

DAG reachability

32

graph
(DAG)

is there a
path?

DAG reachability

Theorem:

Any CoT requires length 𝛺(|E|log|V|) in the worst case.

This bound is attained.

32

graph
(DAG)

is there a
path?

Barriers on Hidden Reasoning

Pfau, Jacob, William Merrill, and Samuel R. Bowman.
"Let's think dot by dot: Hidden computation in
transformer language models." COLM 2024.

Background: Transformers can benefit from “dot-by-dot” CoTs

How far can such
“hidden reasoning”

go?

33

Barriers on Hidden Reasoning

Pfau, Jacob, William Merrill, and Samuel R. Bowman.
"Let's think dot by dot: Hidden computation in
transformer language models." COLM 2024.

Background: Transformers can benefit from “dot-by-dot” CoTs

How far can such
“hidden reasoning”

go?

e=2.71828….

33

Barriers on Hidden Reasoning

Pfau, Jacob, William Merrill, and Samuel R. Bowman.
"Let's think dot by dot: Hidden computation in
transformer language models." COLM 2024.

Background: Transformers can benefit from “dot-by-dot” CoTs

How far can such
“hidden reasoning”

go?

e=2.71828….

33

Barriers on Hidden Reasoning

Pfau, Jacob, William Merrill, and Samuel R. Bowman.
"Let's think dot by dot: Hidden computation in
transformer language models." COLM 2024.

Background: Transformers can benefit from “dot-by-dot” CoTs

How far can such
“hidden reasoning”

go?

e=2.71828….

33

Barriers on Hidden Reasoning

Pfau, Jacob, William Merrill, and Samuel R. Bowman.
"Let's think dot by dot: Hidden computation in
transformer language models." COLM 2024.

Background: Transformers can benefit from “dot-by-dot” CoTs

How far can such
“hidden reasoning”

go?

e=2.71828….

33

Barriers on Hidden Reasoning

Pfau, Jacob, William Merrill, and Samuel R. Bowman.
"Let's think dot by dot: Hidden computation in
transformer language models." COLM 2024.

Background: Transformers can benefit from “dot-by-dot” CoTs

How far can such
“hidden reasoning”

go?

e=2.71828….

33

Barriers on Hidden Reasoning

Pfau, Jacob, William Merrill, and Samuel R. Bowman.
"Let's think dot by dot: Hidden computation in
transformer language models." COLM 2024.

Background: Transformers can benefit from “dot-by-dot” CoTs

How far can such
“hidden reasoning”

go?

e=2.71828….

33

Barriers on Hidden Reasoning

Pfau, Jacob, William Merrill, and Samuel R. Bowman.
"Let's think dot by dot: Hidden computation in
transformer language models." COLM 2024.

Background: Transformers can benefit from “dot-by-dot” CoTs

How far can such
“hidden reasoning”

go?

e=2.71828….

33

Barriers on Hidden Reasoning

Pfau, Jacob, William Merrill, and Samuel R. Bowman.
"Let's think dot by dot: Hidden computation in
transformer language models." COLM 2024.

Background: Transformers can benefit from “dot-by-dot” CoTs

How far can such
“hidden reasoning”

go?

e=2.71828….

33

Barriers on Hidden Reasoning

Pfau, Jacob, William Merrill, and Samuel R. Bowman.
"Let's think dot by dot: Hidden computation in
transformer language models." COLM 2024.

Background: Transformers can benefit from “dot-by-dot” CoTs

How far can such
“hidden reasoning”

go?

e=2.71828….

33

Barriers on Hidden Reasoning

Pfau, Jacob, William Merrill, and Samuel R. Bowman.
"Let's think dot by dot: Hidden computation in
transformer language models." COLM 2024.

Background: Transformers can benefit from “dot-by-dot” CoTs

How far can such
“hidden reasoning”

go?

e=2.71828….

How powerful are such “dot-by-dot” CoTs?

33

Barriers on Hidden Reasoning

Pfau, Jacob, William Merrill, and Samuel R. Bowman.
"Let's think dot by dot: Hidden computation in
transformer language models." COLM 2024.

Background: Transformers can benefit from “dot-by-dot” CoTs

How far can such
“hidden reasoning”

go?

e=2.71828….

How powerful are such “dot-by-dot” CoTs?

How well can transformers hide their reasoning?

33

Barriers on Hidden Reasoning

Theorem:

“Dot-by-dot” CoTs for PARITY exist...

34

Barriers on Hidden Reasoning

Theorem:

“Dot-by-dot” CoTs for PARITY exist, but require super-polynomial length.

34

Barriers on Hidden Reasoning

Theorem:

“Dot-by-dot” CoTs for PARITY exist, but require super-polynomial length.

Empirical results of transformers trained on PARITY 34

Barriers on Hidden Reasoning

Theorem:

“Dot-by-dot” CoTs for PARITY exist, but require super-polynomial length.

Empirical results of transformers trained on PARITY 34

Barriers on Hidden Reasoning

Theorem:

“Dot-by-dot” CoTs for PARITY exist, but require super-polynomial length.

Hidden Reasoning is possible,
but very expensive.

34

Questions for Future Work

Q3: Superlinear lower bounds for CoTs

35input length

CoT
length

Questions for Future Work

Q3: Superlinear lower bounds for CoTs

35

lower bounds in
this work: Ω(N)

Questions for Future Work

Q3: Superlinear lower bounds for CoTs

35

lower bounds in
this work: Ω(N)

many tasks likely
require more,

e.g. Ω(N2)

Summary

Length Generalization

36

Summary

Length Generalization

36

Constrains LLM Abilities

Summary

Length Generalization

36

Constrains LLM Abilities

Lower Bounds for CoT

Summary

Length Generalization

Lower Bounds for CoT Barriers against Hidden Reasoning

36

Constrains LLM Abilities

