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Josh Susskind!, Samy Bengio’, and Preetum Nakkiran'

RASP-L Conjecture (paraphrased).
Transformers length-generalize on problems with
simple programs in the RASP-L language.

Challenge: RASP-L hasn’t been formalized. Expressiveness not understood.

Our First Contribution: Formalize it based on C-RASP.

C-RASP: Yang&Chiang 2024, COLM
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Acc Acc
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$ U r sz Sur sz @

Unique Copy
100
CPs(i) i= # [ < ij=i—1] Qs()) check )
50 PRED,(i) := CPa(i) > 1 preceding ®
token
25
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Training Set Out-of-Domain Test
Acc Acc
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Unique Copy

100

[és

50

25

$ [1,50] [51,100] [101,150]

Training Set Out-of-Domain Test
Acc Acc

o

$ U r sz Sur sz @

Unique Copy (Induction Head)

CP.(I):=#1[j <i,j=i—1] Q)
PRED; (i) := CPs(i) > 1

CBIGRAM.;, := # [j < i] Qb(j) A PRED.(j)
EXISTS.p := CBIGRAM,(i) > 1

collect all
bigram
statistics

(1)
(@)
®3)

(4)
()
(6)

11



o

$ U r sz Sur sz @

Unique Copy
100
CP.(i) = #[ < ij =i -1] Q) (2)
50 PRED,(i) := CP(i) > 1 (3)
: (4)
o5 CBIGRAM,, := #[j < i] Qs(j) A PRED.(j) (5)
EXISTS,b := CBIGRAM, (i) > 1 (6)
: : use .bl.gram @
[1,50] [51,100] [101,150] NEXT,(i) == \/ [Qs(i) A EXISTS,o(i)] ~ STAUSHCS [0 ()
2e= output next token

Training Set Out-of-Domain Test
Acc Acc
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C-RASP|periodic, locall

Boolean-Valued Operations

Count-Valued Operations
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C-RASP|periodic, locall

Boolean-Valued Operations

Initial P(a) i= Q(2)
foro € X

check for symbols

12



C-RASP|periodic, locall

Boolean-Valued Operations

Initial P(i) := Qs (%)
foro € X
Boolean P(i) i=—P (1)
P(i) := Pi1(i) A Pa(2)

Constant Pa)i=T

propositional logic

12



C-RASP|periodic, locall

Boolean-Valued Operations

Initial Pa) '= Q1)
foro € X
Boolean P(i) i=—P (1)
P(i) == Pi(s) APs(2)
Constant Pa)i=T
Positional Pli) = ¢li) checking position
forp € @

12



C-RASP|periodic, locall

Boolean-Valued Operations

Initial P(i) := Qs (%)

foro € X
Boolean P(i) i=—P (1)

P(i) := Pi1(i) A Pa(2)

Constant P@a)s=T
Positional P(i) := ¢(7)

forp € ®
Comparison P(i) := C1(i) < Ce(s) compare

counts

12



C-RASP|periodic, locall

Count-Valued Operations

count how many preceding  Counting  C(i) := #[j <1,v%(i,7)] P(j)
positions j satisfy a property fory € WU{T}
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C-RASP|periodic, locall

count arithmetic

Count-Valued Operations

Counting  C(i) :=#[j < i,9(i,4)] P(j)

forp e WU{T}
Conditional C(i) := P(i) 7 C1(7) : C3(4)
Addition C(2) :== C1(3) + Ca(4)
Subtraction C(i) := C1(i) — Ca(7)
Constant C(i):=1
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C-RASP|periodic, locall

Boolean-Valued Operations

Initial P(i) := Qs (%)
foro € X
Boolean P(i) i=—P (1)
P(i) := Pi1(i) A Pa(2)
Constant Pa)i=T
Positional P(i) := ¢(7)
forp € @

Comparison P(i) := C1(i) < Ca(3)

Count-Valued Operations

Counting  C(i) :=#[j < i,9(i,4)] P(j)

forp e WU{T}
Conditional C(i) := P(i) 7 C1(7) : C3(4)
Addition C(2) :== C1(3) + Ca(4)
Subtraction C(i) := C1(i) — Ca(7)
Constant C(i):=1

12



C-RASP|periodic, locall

Boolean-Valued Operations Count-Valued Operations
Initial P(i) := Qo (3) Counting  C(i) :=#[j <i,9(i,j)] P(j)
foroc e X forp e WU{T}
Boolean z Py (7) Conditional C(i) := P(i) 7 C1(7) : C3(4)
P, ( ) A Pa(3)

Addition C

A,

Constant

—_ |~ ,-\,-\
~.
N B BN AN

Positional P(2

| |
/‘\
\_/

(¢)

(4) ( (
Subtraction C(i) := C1(i) — Ca(7)
Constant C(1)

f0r¢E<I>

Operations from original C-RASP

Comparison P(i) := C1(i) < Ca(3) I
definitions by Yang&Chiang 2024 (COLM,).

12



Newly added (or modified) positionally-aware
operations. Needed to model positional encodings.

Boolean-Valued Operations Count-Valued Operations
Initial P(i) :== Q. (4) I Counting  C(i) := #[j < i,%(i, )] P(j)
foro e X forp € WU{T}
Boolean P2) i=—P(3) Conditional C(i) := P(i) 7 C1(3) : C2(1)
P(i) := Py (0) A P5(9) Addition  C(i) == C1(3) + Ca(i)
Constant P(@) =T Subtraction C(i) := C1(i) — Cs(3)
Positional Pi) = @(4) ~
ot e D I Constant C(i):=1
Comparison  P(i) := C1(i) < C2(9) I Operations from original C-RASP

definitions by Yang&Chiang 2024 (COLM,).
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% 1 1
Parity 0 0 S even @

100

75

50 ........................................

25

: [1,50] [51,100] [101,150]

Training Set Out-of-Domain Test
Acc Acc



0 1 1 0 S even @

Parity
1
75 : (1)
: 2)
5O | oo 77 ©

5 Provably no C-RASP program!

C-RASP|periodic, local] for Parity

0 1,50 51,100] |101,150
1:50]  |51.100] [101.150) —> C-RASP[(] for (aa)*

Training Set Out-of-Domain Test
Acc Acc

13



0 1 1 0 S even @

Parity
o
5 : (1)
S (2)
B v 20000 ”n? (3)
25 Provably no C-RASP program!

C-RASP|periodic, local] for Parity

0 1,50 51,100] |101,150
1400 [51.100] [101.150] —> C-RASP[(] for (aa)*

Training Set Out-of-Domain Test
Acc Acc

13



Same holds for more complex state tracking.

Paul had an encyclopedia. Peo . Ie eXChan . in .

Mary had a novel.
Paul gave his book to Josh.

Mary gave her book to Paul. . (1)
~ Josh gave his book to Kim. 2
V- Paul gave his book to Ruth.
& Who has the encyclopedia? %
la . (2)
Mary , 777 (3)
Josh Answer: Kim has the encyclopedia.

Kim W Provably no C-RASP program!

’ (l) Ruth

Paul @



Copy with Repetitons ©° @ @ b @ $ a a b a @

100 Copy With Repetition

75 5 (1)

3 (2)
50 777 (3)
25 Provably no C-RASP program!

rigorous proof via

0
[1,50] [51,100] [101,150] communication complexity

Training Set Out-of-Domain Test
Acc Acc

14
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Assume fis expressible in C-RASP.
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Choose a transformer Tn

- with context window 2n
- that exactly fits fon all inputs up to
length n

length 2n

length n

training
data
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Theorem (informal)

Assume fis expressible in C-RASP.

context window of Tn

\_

Choose a transformer Tn

- with context window 2n
- that exactly fits fon all inputs up to
length n

subject to a certain regularizer.

length 2n

length n

training
data
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Theorem (informal)

Assume fis expressible in C-RASP.

context window of Tn

Choose a transformer Tn

- with context window 2n
- that exactly fits fon all inputs up to
length n

subject to a certain regularizer.
N

length 2n

training
length n data

length 2n

Then T_matches fat all inputs up to length 2n,

o

test
examples
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-

Theorem (informal)

Assume fis expressible in C-RASP.

context window of Tn

Choose a transformer Tn

- with context window 2n
- that exactly fits fon all inputs up to
length n

subject to a certain regularizer.
N

length 2n

training
length n data

length 2n

Then T_matches fat all inputs up to length 2n.

as long as n>N (7).

\

test
examples

15




: Disclaimer

|dealized learning: all data is
available up to length n.
Not SGD

15



: Disclaimer

|dealized learning: all data is
available up to length n.
Not SGD

Focus on APE / NoPE

15



Proof Idea

T,
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Proof Idea

T length<1 length<2

1
training @ test @

data examples




Proof Idea

T,

T length<2 length<4

training @ test @

data examples




Proof Idea

length<3 length<6
training @ test
data examples
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Proof Idea

length<4 length<8
training @ test
data examples
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Proof Idea

length<5 length<10
training @ test
data examples
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Proof Idea

T1
T2
T
T4
T5

T length<6 | lengths12
training@ test @
data examples
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Proof Idea

length<7 length<14
training &) test @)
data examples
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Proof Idea

length<8 length<16
training &) test @)
data examples
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Proof Idea

Length Generalization

@

length n length 2n
training @ test
data examples

16



Proof Idea

f has C-RASP program
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Proof Idea

f has C-RASP program

= R(T,) is bounded
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Proof Idea

f has C-RASP program

T = R(T) is bounded

I = T.only traverse a finite number of distinct

A, T, algolrithms
T4
A, T,
A3 T6
A4 T7
A4 T8

16
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Proof Idea

f has C-RASP program
= R(T.) is bounded

= T.only traverse a finite number of distinct
algorithms

= each algorithm is either ruled out at some

8 16
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Proof Idea

f has C-RASP program
= R(T.) is bounded

= T. only traverse a finite number of distinct
algorithms

= each algorithm is either ruled out at some
n, or never ruled out

8 16



Proof Idea

f has C-RASP program

A‘I T1
= R(T.) is bounded
-
’ = T. only traverse a finite number of distinct
A T, algorithms

T4 = each algorithm is either ruled out at some

A, T, n, or never ruled out
A, T, = after some N (f), each T matches f
A4 T7 |ength n |ength 2n
A, Tg training @ test @ 16

data examples
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— APE
- - NoPE

—in C-RASP
— not in C-RASP

Binary

Majority
100 » B »
s
50 e -°
25
0
Bin 1 Bin 3

Bin 2
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— APE
- - NoPE

—in C-RASP
— not in C-RASP

100

75

50

25

Bin 1

Binary
Majority

Bin 2

Bin 3

Majority
100 PPt
75
50
25
0 | g
Bin1 Bin2 Bin3

18



Binary

Majority
— APE 100 ——— VR
- - NoPE 75
50
—in C-RASP -
—not in C-RASP .
Bin 1 Bin 2

----- >

Bin 3

Majority Sort
100 Mg 100 I —>
75 75 .
50 50
25 25
0 0 e R )
Bin 1 Bin2 Bin3 Bin 1 Bin2 Bin3

18



Binary

Majority Majority Sort
__ APE 100 » ¥ 100 pe———F—cix 100 D —P
- - NoPE 75 75 75 =
50 (¢--------- e + 50 50
— 1N C'RASP 25 25 25
—not in C-RASP : | — — 2| R S | — J
Bin1 Bin2 Bin3 Bin1 Bin2 Bin3 Bin1 BiN2 Bin3
Copy '
Unique
100 ——>—p
75 H— \ .
works well with PE
50
25 kS L
fails with NoPE
0 P C— L > ¢

Bin1 Bin2 Bin3

18



Binary

Majority Majority Sort
_ APE 100 » 3 ¥ 100 ———P——gi - 100
- - NoPE 75 75 75 X
50 ¢--------- * 50 50
—in C-RASP o5 e 75
— not in C-RASP | | — )
0 0 0 e———--—-- S °
Bin1 Bin2 Bin3 Bin1 Bin2 Bin3 Bin1 Bin2 Bin3
Copy Copy
Unique Repeat
100 k——>—— 100
75 75
50 50
25 >< 25

Bin1 Bin2 Bin3 Bin1 Bin2 Bin3

18



Binary

Majority Majority Sort
— APE 100 » » ¥ 100 —F—p 100 H—H—>
- - NoPE 75 75 75 e
50 fe-——-—-- feaescmesen - 50 50
— not in C-RASP | — | .
0 0 i —  — .
Bin 1 Bin2 Bin3 Bin 1 Bin2 Bin3 Bin 1 Bin2 Bin3
Copy Copy
Unique Repeat Parity
100 ¥——»—» 100 100
75 75 75
50 50 50
25 >< 25 25
0O e-—-———- L 3( 0O e—-——- S 0

Bin1 Bin2 Bin3 Bin1 Bin2 Bin3 Bin1 Bin2 Bin3

18



Binary

Majority Majority Sort
- - NoPE 75 75 75 e
50 &= - - 50 50
—not in C-RASP | | — .
0 0 0 fe———-- - -
Bin1 Bin2 Bin3 Bin1 Bin2 BiNn3 Bin1 Bin2 Bin3
Copy Copy
Unique Repeat Parity Addition
100 k——>»——» 100 100 100
75 75 75 75
50 50 50 50
25 >< 25 25 25
0O e-—-———- L 3( 0 re———- S 0 0 (e-—- R

Bin1 Bin2 Bin3d Bin1 Bin2 Bin3d Bin1 Bin2 Bin3 Bin1 Bin2 Bin3

18



Binary

Majority Majority Sort
— APE 100 » * 100 P 100 K —>
- - NoPE 75 75 75 X
50 &----—----- - * 50 50
—not in C-RASP | | .
0 0 0 [¢— -
Bin1 Bin2 Bin3 Bin1 Bin2 Bin3 Bin1 Bin2 Bin3
Copy Copy
Unique Repeat Parity Addition
100 ———>»——» 100 100 100
75 75 75 75
50 50 50 50
25 >< 25 25 25
0 (e-—- L 3( 0 fe-——- S 0 0 fe——- R

Bin1 Bin2 Bin3d Bin1 Bin2 Bin3 Bin1 Bin2 Bin3 Bin1 Bin2 Bin3

18



(Non)Unique Copying in LLMs

> uUur sz Sursz @

$abbas$abbald

100

75

50

25

. [1,50] [51,100] [101,150]

Training Set Out-of-Domain Test
Acc Acc

100

Fg:

50

25

£ [1,50] [51,100] [101,150]

Training Set Out-of-Domain Test
Acc Acc

19



(Non)Unique Copying in LLMs

Lorem-lpsum style copying:
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Lorem-lpsum style copying:

Lorem ad ipsum sed do ipsum sed aliqua
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Lorem...
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(Non)Unique Copying in LLMs

Lorem-lpsum style copying:

Lorem ad ipsum sed do ipsum sed aliqua

Lorem ad ipsum sed...

Prediction: copying errors
should appear when bigram
transitions are ambiguous

19



(Non)Unique Copying in LLMs

Lorem-lpsum style copying:

Lorem ad ipsum sed do ipsum sed aliqua

Lorem ad ipsum sed...

EEE Unambiguous [ Ambiguous
LLama 3

Accuracy

Prediction: copying errors
should appear when bigram
transitions are ambiguous

8B 8B Instruct 70B 70B_Instruct

Qwen 2.5

Accuracy
o
(]
o

bk

7B 7B_Instruct 32B 32B_Instruct

19



On which tasks do transformers length-generalize?

CPa(i) :=#[j <i,j=1i—1] Qa(y) @
CBIGRAM,; :=#[j <1i] Qu(j) ACPa(j) > 1 )
NEXT.(i) = \/ [Qo(i) A CBIGRAM,a(i) > 1] 3)
oEX
Binary
Majority Majority Sort
———K | S S 2 PP
— APE 100 100 100
-- NoPE 75 75 75 %
50 (& e - 50 50
—in C-RASP 25 25 o5
—not in C-RASP . | — | d ol | !
Bin1 Bin2 Bin3 Bin1 Bin2 Bin3 Bin1 Bin2 Bin3
Copy Copy
Unique Repeat Parity Addition
100 K——>——p
75
50
25 .
0

Bin1 Bin2 Bin3 Bin1 Bin2 Bin3 Bin1 Bin2 Bin3 Bin1 Bin2 Bin3

Accuracy Accuracy
°© = ° °© =
=} o © ©o (=3
(] o L= wu [ =

o
©
1S)

B Unambiguous [ Ambiguous
LLama 3

8B Instruct 70B 70B_Instruct

Qwen 2.5
’ 7B 7B_Instruct 32B 32B_Instruct

21



Questions for Future Work

Q1: Quantitative bounds for length generalization.

21



Questions for Future Work

Q1: Quantitative bounds for length generalization.

How big is N(f)?

First steps:

Non-Asymptotic Length Generalization

Thomas Chen! Tengyu Ma'! Zhiyuan Li?

Quantitative Bounds for Length Generalization in Transformers

Zachary Izzo* ZACH@NEC-LABS.COM
NEC Labs America
Eshaan Nichani* ESHNICH @PRINCETON.EDU

Princeton University
Jason D. Lee JASONDLEE88 @ GMAIL.COM

Princeton University

21



Questions for Future Work

Q2: Beyond individual tasks

21



Questions for Future Work

Q2: Beyond individual tasks

How can circuit sharing between task help length generalization?

First steps:

Extrapolation by Association: Length Generalization

Transfer in Transformers Length Generalization via Auxiliary Tasks
Ziyang Cai* Nayoung Lee
University of Wisconsin-Madison iversity of Wisconsin-Madison
Pranjal Awasthi Anupam Gupta Ravi Kumar
Avi Schwarzschild Samet Oymak imitris Papailiopoulos Google NYU Google
Carnegie Mellon University ~ University of Michigan ~ University of Wisconsin-Madison pranjalawasthi®google.com anupam. g@nyu. edu ravi.k53@gmail . com

Microsoft Research 2 1



Questions for Future Work

Q2: Beyond individual tasks

How can circuit sharing between task help length generalization?

Is there data that provably unlocks broad length generalization in reasoning?

First steps:

Extrapolation by Association: Length Generalization

Transfer in Transformers Length Generalization via Auxiliary Tasks
Ziyang Cai® Nayoung Lee
University of Wisconsin-Madison University of Wisconsin-Madison
Pranjal Awasthi Anupam Gupta Ravi Kumar
Avi Schwarzschild Samet Oymak Google NYU Google
Carnegie Mellon University  University of Michigan  University o pranjalawasthiQgoogle.com anupam. g@nyu. edu ravi.k530gmail.com

21



-

o

Basic Algorithmic
Abilities

1-step

~

/

Which abilities can
transformers learn?

/I—Iigh-level Reasoning\
Abilities
N CoT Y.

How costly is
reasoning?

22



Lower Bounds for Chain-of-Thought
Reasoning in Hard-Attention Transformers

Alireza Amiribavandpour, Xinting Huang, Mark Rofin, Michael Hahn

ICML 2025 23
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Without CoT

01 1 0 % e @
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Without CoT @

01 1 0 % e @

very difficult

even in-distribution
generalization is notoriously
difficult on long strings

24



Without CoT @ With CoT @

\

5 01 1 0 $ e ( 5 0 1 1 0 8

e.g. Anil et al 2022
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01 1 0 % e @

With CoT @&
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01 1 0 % e @

\

01 1 0 S e o

With CoT @&

[ |
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Without CoT @

01 1 0 S e (

o

O

With CoT @

[ |

0110 8% e oe
|
[
I

24



O

\

O

Without CoT @

01 1 0 % e @

\

With CoT @&

-

OllO$eoeé
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Without CoT @

01 1 0 % e @

\

With CoT @&

—

01 1 0 S e oe e S e

«

24



Without CoT @ With CoT @

\
\

S0 1 1 0 S e (@ 01 1 0 S e oee S e

@ &
Got it — let's carefully trace the movements step by step: H

1. Initial ownership:
« Paul » encyclopedia ?
« Mary - novel o
2. Paul gave his book (encyclopedia) to Josh: Klm ) (H
« Josh - encyclopedia
« Paul - nothing (E Rulh
3. Mary gave her book (novel) to Paul: Paul
« Paul - novel
« Mary = nothing
4. Josh gave his book (encyclopedia) to Kim:

« Kim = encyclopedia G PT—5
« Josh = nothing 3000

5. Paul gave his book (novel) to Ruth:
« Ruth - nove/

Deepseek-R1
2000

« Paul = nothing

Tokens

1000 LlaMa-3
Final ownership: // Qwen
« Kim - encyclopedia 0
« Ruth - novel O 5 1 0 30 40

« Paul, Mary, Josh - nothing

Answer: Kim has the encyclopedia. Number Of Transactions 24
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How much of this extra cost is needed?

24



©)
@]

\

Without CoT With CoT

|

O 1 1 0 S e (@ $ 01 10 S e oee S e

How much of this extra cost is needed?
Can CoTs be condensed?
Perhaps to lengthlog N? /N 7

24



O
O

\

Without CoT With CoT

—

O 1 1 0 S e (@ $ 01 10 S e oee S e

How much of this extra cost is needed?
Can CoTs be condensed?
Perhaps to lengthlog N? /N 7

This paper:
Mostly, no
compression
possible.

«

24



|

Given an algorithmic problem, how does the CoT length
scale with input length N?
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Given an algorithmic problem, how does the CoT length
scale with input length N?

Analogue to classical computational complexity, but for LLMSs.

Our contribution: An Incompressibility Theorem for CoT.
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Given an algorithmic problem, how does the CoT length
scale with input length N?

Analogue to classical computational complexity, but for LLMSs.

Our contribution: An Incompressibility Theorem for CoT.

Results in this paper apply in the regime where numerical precision in
transformer is fixed while N — infty.

Equivalently to “unique hardmax attention”.

25



Upper Bound (prior work)

Theorem: If a Turing machine solves a problem in time T(n), then a
Transformer can solve with a CoT of length O(T(n)).

e.qg. Perez et al 2019; Merrill and Sabharwal 2024; and others

26



Upper Bound (prior work)

Theorem: If a Turing machine solves a problem in time T(n), then a
Transformer can solve with a CoT of length O(T(n)).

But this bound is not tight!

Transformers solve many problems without CoT.

26



Our Lower Bound
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Our Lower Bound

Theorem

| correct
output

input - ‘long” CoT

length N length Q(N)
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Our Lower Bound

Theorem

input

length N

input

length N

| correct

output

length o(N)

‘long” CoT

length Q(N)
“short” CoT | correct
output
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Our Lower Bound

Theorem

input

length N

input

length N

correct

] output

‘long” CoT

length Q(N)
“short” CoT |correct
output

length o(N) @
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Our Lower Bound

Theorem

| correct
output

input = “short” CoT

length N length o(N)



Our Lower Bound

Theorem

input

kkk Kk ik kA LAk A kA Ak I A A LA L LK

Example: PARITY
010110111001010110101001

“short” CoT

| correct

length o(N)

(some CoT)

output

\\oddll

27



Our Lower Bound

Theorem

input

1*0*****1****0*1******1*

“short” CoT

| correct

output

27



Our Lower Bound

Theorem

| correct

input ~  “short” CoT output

1*0*****1****0*1******1*

fixed to a
specific input
symbol



Our Lower Bound

Theorem

input

Th(kkkkk ] kkkk(k ] kkkkkk | *

fixed to a remain
specific input unassigned
symbol

“short” CoT

| correct

output

27



Our Lower Bound

Theorem

input

A

1*0*****1****0*1******1*

100100011011001101110010
100110111000000100010111
110000001111100110101010
110111011111001101001010
100010011000000100111111

“short” CoT

correct
output
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Our Lower Bound

Theorem

input

A

1*0*****1****0*1******1*

100100011011001101110010
100110111000000100010111
110000001111100110101010
110111011111001101001010
100010011000000100111111

7 » correct
short” CoT Sl
abbaab
abbaab all matching
abbaab inputs generate
abbaab the same CoT
abbaab

27



Our Lower Bound

Theorem

input

1*0*****1****0*1******1*

In words:

“short” CoT

| correct

output
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Our Lower Bound

Theorem

input

1*0*****1****0*1******1*

In words:

“short” CoT

| correct

output

Assume a (fixed-precision) transformer computes a CoT of length o(N).

27



Our Lower Bound

Theorem
input -~ “short” CoT g COOUI:[I'pelj:tt
I Q**kxkxkx]*hkKk (k] kkkxxx] * (fixed independent of the * inputs)
In words:

Assume a (fixed-precision) transformer computes a CoT of length o(N).
One can fix a small fraction of input bits that makes the CoT constant on all
compatible input strings.



Proof Idea

input

“short”
CoT

*x kX kX K %

correct
output
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Proof Idea

input

llsho,_t”
CoT

*x kX kX K %

correct
output
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Proof Idea

correct
output
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Proof Idea

C Output

F ot

C,

x, % |[% 1% 1% 1[c,][¢c,
input o

Set each input token i.i.d. to
* with p=80%
0  with p=10%
1 with p=10%

Analogous to Random Restrictions
from Circuit Complexity.

Furst, Saxe, Sipser 1984
Hastad 1986

correct
output

27



Proof Idea

C Output

F ot

C,

Set each input token i.i.d. to
* with p=80%
0  with p=10%
1 with p=10%

Analogous to Random Restrictions
from Circuit Complexity.

Furst, Saxe, Sipser 1984
Hastad 1986

X, |[%, |[1 ][0 |[x ][c, ][c,
input o
x *x 1 () *

correct
output

27



Proof Idea

With Prob > 0, the transformer will
end up being “distracted” from all
free inputs.

correct

%7
—
X, |[%, |[1 ][0 |[x |[c, ][c,
input oo
x % _1

output

0 *
\ Ignored when

producing CoT!

27



Proof Idea

input

“short”
CoT

**10*

correct
output

27



A General Lower Bound for CoT Length

“short”
CoT

.| correct

output

Theorem
input
**10*
O 01 00O
01 1 00
1 01 0 1
O 010 1

ab
ab
ab
ab

all matching
inputs generate
the same CoT

28



A General Lower Bound for CoT Length

Example: AND function

input

“short”
CoT

.| correct

output

>(_

O B O O

>(_

o O P O

e
OO0 0o o

>(_

_ P O O

ab
ab
ab
ab

FALSE
FALSE
FALSE
FALSE

28



A General Lower Bound for CoT Length
Example: PARITY function

input

“short”
CoT

.| correct

output

>(_

O B O O

>(_

o O P O

N
OO0 O0OO0O o

>(_

_ P O O

ab
ab
ab
ab

ODD
EVEN
ODD
EVEN

28



State Tracking

Corollary:
Any CoT for PARITY has length Q(N).

29



Parity

PARITY
la 5600 —8— DeepSeek-R1
&) —®= 01-mini
)
£
c 4000 >
2
o 3000
X
9 J
“§ 2000 "
() o . 5
_o '
Z e=—0o—"
0
20 40 60

Length of the bitstring

Empirical results of LLMs performing PARITY

We only include
traces leading to the
correct answer

29



Parity

PARITY
ia 5600 -8 DeepSeek-R1
&) —®= 01-mini
(0]
=
T 4000 3
2
@ 3000
X
9 J
S 2000 "
() o ‘ 5
_o '
£ 1000 ./.é,__.____./
Z e=—0o—"
0
20 40 60

Length of the bitstring

Empirical results of LLMs performing PARITY

We only include
traces leading to the
correct answer

The growth of CoT
appears at least linear

29



Please answer very briefly, and without external resources (e.g.
Python interpreter). What is 61157*4555?

The result of 61157 x 4555 is 278657635.

ChatGPT4o0

30



Please answer very briefly, and without external resources (e.g.
Python interpreter). What is 61157*4555?

The result of 61157 x 4555 is 2786587635.  jhcorrect

actual: 2789570135

See also:
for GPT4 zero shot: Dziri et al, NeurlPS 2023.
ChatGPT40 for: 03-mini: https://x.com/yuntiandeng/status/1889704768135905332
for DeepSeek R1: https://x.com/nouhadziri/status/1886423897567805835 30


https://x.com/yuntiandeng/status/1889704768135905332
https://x.com/nouhadziri/status/1886423897567805835

Multiplication

Theorem:;

Under a combinatorial conjecture, multiplying two N-bit numbers
requires a CoT of length Q(N).

What is the upper bound?

30



“naive”
grade
school
algorithm:
O(N?) steps

To compute 61,157 X 4, 555 using intermediate steps, let's break it down step-by-step.

We'll use the traditional method of multiplication, multiplying 61, 157 by each digit of 4, 555
(starting from the right), and then summing up the partial products.

Step 1: Break down the numbers
« 61,157 (the multiplicand)
o 4,555 (the multiplier)
Write 4, 555 as:
4,555 = 4,000 + 500 + 50 + 5
Thus, we need to compute:
61,157 x 4,555 = 61,157 x (4,000 + 500 + 50 + 5)

This becomes:

(61,157 x 4,000) + (61,157 x 500) + (61,157 x 50) + (61,157 x 5)

Step 2: Compute partial products
1.61,157 x 5
61,157 x 5 = 305, 785
2.61,157 x 50
61,157 x 50 = 3,057, 850
3.61,157 x 500
61,157 x 500 = 30, 578,500
4.61,157 x 4,000
61,157 x 4,000 = 244, 628,000

Step 3: Add the partial products
Now, let's sum all the partial products:

1. 305,785

30



Naive CoT requires ©
(N?) steps.

—u— Naive Scratchpad

O(N?)
600 o
" y
c
(]
~
=}
o ;
S) o
8
2
400 P
E J
=
2 -
o -
7% — - -
-
-
e Q(N)
- ’ ’
/7,",_ - -
a -
m 5 -
.,//""»'!J - -
L7 s -.r_:’ -
B -
0' I’ r T T T '
2 4 8 10 12 14 16

Number of Bits

30



—e— NTT Scratchpad
—=— Naive Scratchpad

Naive CoT requires 500 ]
O(N?) steps. O(N?)

[*)]

o

o
1

CoT with ©(N log N)
steps exists.

& \ 4 L 4 & @ @ 9

Number of Tokens

0 O(Nlog N) _
200 - ’,”” Q(N)
01 ;
2 4 6 8 10 12 14 16

Number of Bits



Order Statistics

8 45 82 71 5 28 65

list of N integers
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Order Statistics

8 45 82 71 5 28 65 —-> 45

list of N integers median
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Order Statistics

8 45 82 71 5 28 65 —-> 45

list of N integers median

Theorem:

For MEDIAN, any CoT requires length ©(N). This bound is attained.

31



Order Statistics

Number of tokens in the CoT

10000

8000

6000

4000

2000

MEDIAN
—8— DeepSeek-R1
—=®= 01-mini
@
o/
/ S=—r—e
®
o/./
o/

20 40 60 80
Sequence length

Empirical results of LLMs performing MEDIAN

We only include
traces leading to the
correct answer

the growth of CoT
appears at least linear
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DAG reachability

graph
(DAG)

32



DAG reachability

is there a
path?

OO

graph
(DAG)

32



DAG reachability

is there a
path?

graph

Theorem:;

Any CoT requires length Q(|E|[log|V|) in the worst case.

This bound is attained.

32



Barriers on Hidden Reasoning

Pfau, Jacob, William Merrill, and Samuel R. Bowman.
"Let's think dot by dot: Hidden computation in
transformer language models." COLM 2024.

33
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Immediate answer
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[ @ o B J “7 digits are greater than 5”
QI
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Barriers on Hidden Reasoning

Prompt: "How many of the first 6 digits of e are >57"

Immediate answer Chain of thought

2 )

[: B o B ] “7 digits are greater than 5”
aIIomm

e=2.7/1828....

LM Continuations

“2<5, 7>5, 1<5, 8>5, 2<5, 8>5,
that’s 3 digits”
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Prompt: "How many of the first 6 digits of e are >57"

Immediate answer Chain of thought LM Continuations
[ Bo B J “7 digits are greater than 5” “2<5, 7>5, 1<S, 8>3, 2<5, 85,
e that’s 3 digits
Filler tokens “a s« = s s » Jdiqits”
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transformer language models." COLM 2024.
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Barriers on Hidden Reasoning €=2.71828....

Prompt: "How many of the first 6 digits of e are >57"

How powerful are such “dot-by-dot” CoTs?

Filler tokens . 3 digits”

Pfau, Jacob, William Merrill, and Samuel R. Bowman.
"Let's think dot by dot: Hidden computation in
transformer language models." COLM 2024.
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Barriers on Hidden Reasoning €=2.71828....

Prompt: "How many of the first 6 digits of e are >57"

How powerful are such “dot-by-dot” CoTs?

How well can transformers hide their reasoning?

Filler tokens . 3 digits”

Pfau, Jacob, William Merrill, and Samuel R. Bowman.
"Let's think dot by dot: Hidden computation in
transformer language models." COLM 2024.

33



Barriers on Hidden Reasoning

Theorem:

“Dot-by-dot” CoTs for PARITY exist...
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Barriers on Hidden Reasoning

Theorem:

“Dot-by-dot” CoTs for PARITY exist, but require super-polynomial length.

500

CoT Length
n w B
8 8 8

ki
o
o

0

Full CoT

Acc
1.0

0.9

0.8
0.7
0.6
0.5
0.4

Empirical results of transformers trained on PARITY

@ ee o

sl

Sy @ @ © © 0 0 0 o

0 100 200 300 400 500
Input Length
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Barriers on Hidden Reasoning

Theorem:

“Dot-by-dot” CoTs for PARITY exist, but require super-polynomial length.

500

CoT Length
w B
8 8

n
o
o

ki
o
o

Full CoT Dot-by-Dot CoT
500 ® e o o
Acc ‘o 400 o—o—o—eo Acc
=
22 B L
07 o
o 'ézoo o o o
° o 0.5 o
SRR H 0.4 .
i v 6000000 0 LA | ' l
0 100 200 300 400 500 20 40 60

Input Length Input Length

Empirical results of transformers trained on PARITY

1.0
0.9
0.8
0.7
0.6
0.5
0.4
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Barriers on Hidden Reasoning

Theorem:

“Dot-by-dot” CoTs for PARITY exist, but require super-polynomial length.

Hidden Reasoning is possible,
but very expensive.

34



Questions for Future Work

Q3: Superlinear lower bounds for CoTs

CoT
length

input length
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Questions for Future Work

Q3: Superlinear lower bounds for CoTs

lower bounds in
this work: Q(N)

>
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Questions for Future Work

Q3: Superlinear lower bounds for CoTs

many tasks likely
require more,
A e.g. Q(N?)

lower bounds in
this work: Q(N)

>
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NEXTa(i) =

Length Generalization

e

#[j <ij=i-1] Qu(5)
#[j <1 Qu(G) ACPa(d) 21

()
@
®)

— APE

-- NoPE

—in C-RASP
—not in C-RASP

25

[Iye—

Bin 1

Bin 2

Bin3

V [Q-() ACBIGRAM,4(i) > 1]
Binary
Majority Majority Sort
100 - - * 100 - P 100 PP -
75 75 75
50 + *) 50 50
25 25 25
0 ('} — S L ——
Bin1 Bin2 Bin3 Bin1 BiNn2 Bin3 Bin1 Bin2 BIN3
Copy
Repeat Parity Addition
100 100 kx\ 100
75 75 \ 75
50 50
25 25
0.

0 e

Bin1 Bin2 Bin3 Bin1 Bin2 Bin3 Bin1 Bin2 BIn3

36



Length Generalization

— 1] Qal4)

(0]
=#[j <i] Q) ACP(G) 21 @
NEXT,(i) = \/ [Qr(3) ACBIGRAMa(i) > 1] 3)
sen
Binary
Majority Majority Sort
— APE 100 W————d———% 100 B Pp 100 B
-- NoPE 75 75 75 =
50 + *- *) 50 50
—in C-RASP 2 - -
—notin C-RASP o 0 o b— .
Bin1 Bin2 Bin3 Bin1 BiNn2 Bin3 Bin1 Bin2 BIN3
Copy Copy
Unique Repeat Parity Addition

100 ¥——>——» 100
75 75

50 50

25 25

0+

0 0 0+

Bin1 Bin2 Bin3 Bin1 Bin2 Bin3 Bin1 Bn2 BiNn3 Bin1 Bin2 Bin3

Constrains LLM Abilities

Accuracy
° o [
© © °
3 & 8

°
3

Accuracy
°
©
&

o
S

- bi 0 Amt
LLama 3
8B 8B Instruct 70B 70B_Instruct
Qwen 2.5
7B 7B_Instruct 328 32B Instruct
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Number of tokens in the CoT

5000

4000

3000

2000

1000

Length Generalization

Constrains LLM Abilities

- . - bi ] Ambi
CP.(i) :=#[j <ij =i~1] Quls) ()}
CBIGRAM, = #1j <i] Qu(j) ACPa(3) 2 1 @ LLama 3
NEXT.(i) = \/ [Q+(i) ACBIGRAM,a(i) > 1] 3) 1.00
s &
@
£
Binas 3 0.95
Majority Majority Sort &
— APE 100 B———d———% 100 M—B—ps 100 BB
0.90
-- NoPE 75 75 75 X 8B 8B_Instruct 70B 70B_Instruct
50 + *- *) 50 50
i wen 2.5
~in C-RASP . 2 2 . Q
—notin C-RASP o P > -
Bin1 Bin2 Bin3 Bin1 BiNn2 Bin3 Bin1 Bin2 BIN3 E
Copy Copy 3 0.
Unique Repeat Parity Addition g 0.95
100 ¥—>—p <
75 0.90
0 7B 7B_Instruct 32B 32B_Instruct

25

0 - 2y -
Bin1 Bin2 Bin3 Bin1 Bin2 Bin3 Bin1 Bn2 BiNn3 Bin1 Bin2 Bin3

Lower Bounds for CoT

PARITY
Theorem

° . “ ” correct
’ input H ‘short” CoT }—»‘ output‘

THQH KKK KAk k (k] khkkh K] *

—e— DeepSeek-R1
—o— o1-mini

r o 100100011011001101110010 abbaab ‘
? =2 100110111000000100010111 abbaab all matching
e | 110000001111100110101010 abbaab inputs generate
S 110111011111001101001010 abbaab the same CoT
100010011000000100111111 abbaab
20 40 60

Length of the bitstring

36



Number of tokens in the CoT

Length Generalization

Constrains LLM Abilities

- . - bi ] Ambi
CP.(i) :=#[j <ij =i~1] Quls) ()}
CBIGRAM, = #1j <i] Qu(j) ACPa(3) 2 1 @ LLama 3
NEXT.(i) = \/ [Q+(i) ACBIGRAM,a(i) > 1] 3) 1.00
s &
@
£
Binas 3 0.95
Majority Majority Sort &
— APE 100 B———d———% 100 M—B—ps 100 BB
0.90
-- NoPE 75 75 75 X 8B 8B_Instruct 70B 70B_Instruct
50 + *- *) 50 50
i wen 2.5
~in C-RASP . 2 2 . Q
—notin C-RASP o P > -
Bin1 Bin2 Bin3 Bin1 BiNn2 Bin3 Bin1 Bin2 BIN3 E
Copy Copy 3 0.
Unique Repeat Parity Addition g 0.95
100 ¥—>—p <
75 0.90
0 7B 7B_Instruct 32B 32B_Instruct

25

0 -
Bin1 Bin2 Bin3 Bin1 Bin2 Bin3 Bin1 Bn2 BiNn3 Bin1 Bin2 Bin3

Lower Bounds for CoT Barriers against Hidden Reasoning

PARITY Full CoT Dot-by-Dot CoT

Theorem
5000 Mo |DespSeckiRl 500 500 . 44—
—e— o1-mini 400 Acc 400 o o o o Acc
1.0 1.0
4000 ) correct £ 09§ 09
3000 | THO KKk k k] khh k() k] khkkkk]* = 200 07 - 1] 55
[&] 0.6 o 0.6
2000 > 0 4 100100011011001101110010 abbaab ) 100 .3 gi 10 11 g:,
? =e 100110111000000100010111 abbaab all matching ISREE - TR
1000 e =" 110000001111100110101010 abbaab inputs generate L 0 R 0
= 110111011111001101001010 abbaab the same CoT 0 wol 20(1L300th400 500 20 ' mf \ 60
9 100010011000000100111111 abbaab nput Lengf nput Lengt
20 40 60

Length of the bitstring



