

# Understanding Architectural Constraints on LLM Reasoning Abilities

Michael Hahn

NeurIPS Workshop Foundations of LLM Reasoning



Saarland Informatics  
Campus



UNIVERSITÄT  
DES  
SAARLANDES

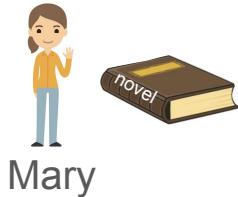
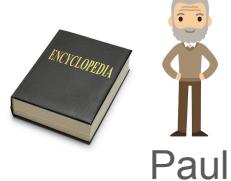
# Can LLMs Track States?

# Can LLMs Track States?

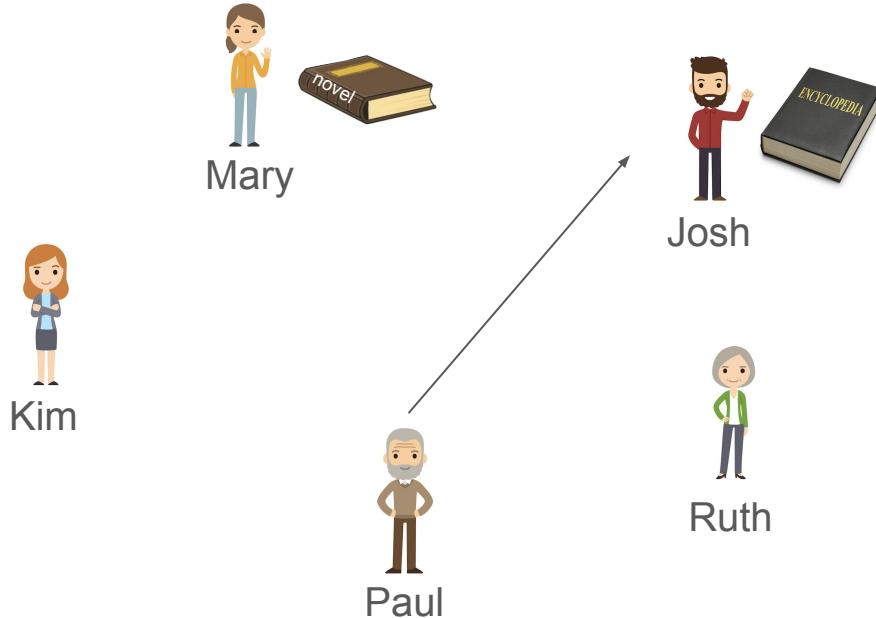


# Can LLMs Track States?

Paul had an encyclopedia.  
Mary had a novel.

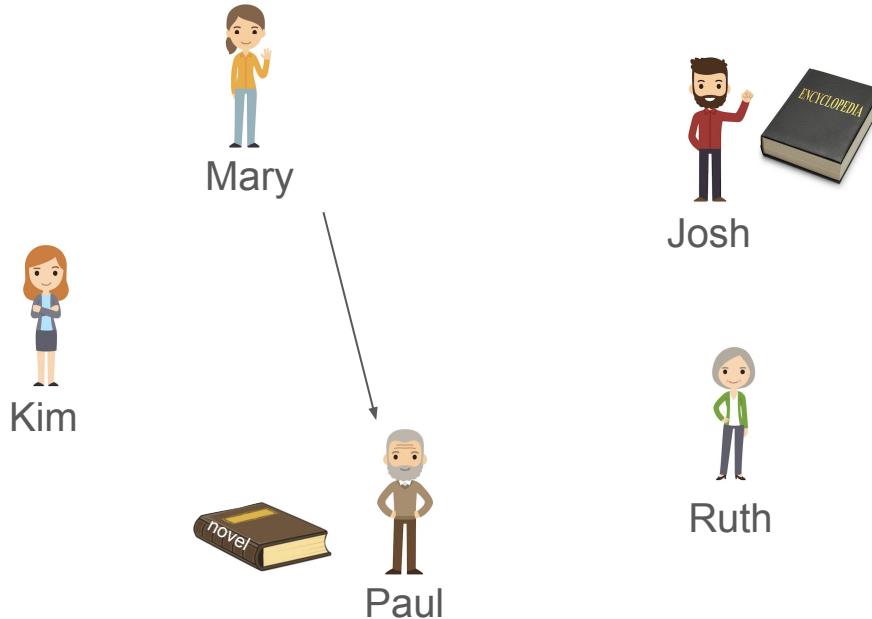


# Can LLMs Track States?



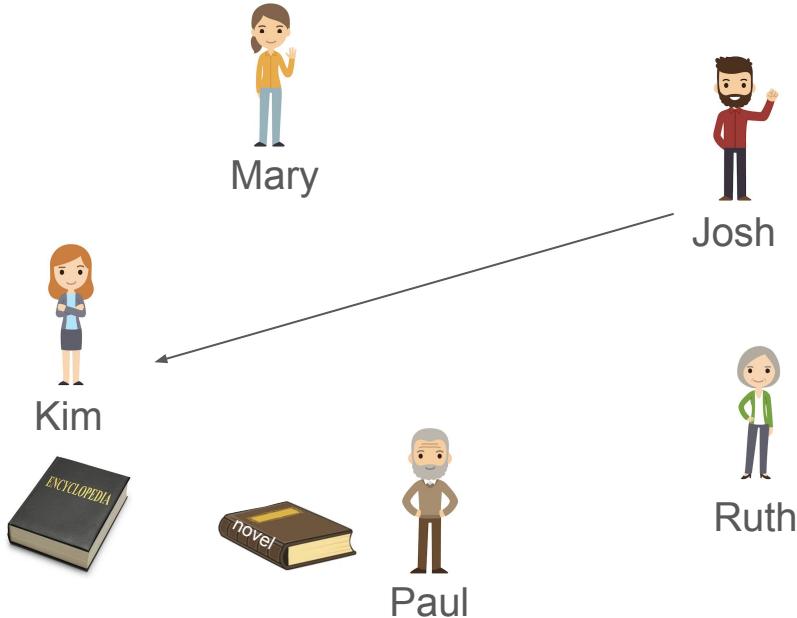
Paul had an encyclopedia.  
Mary had a novel.  
Paul gave his book to Josh.

# Can LLMs Track States?



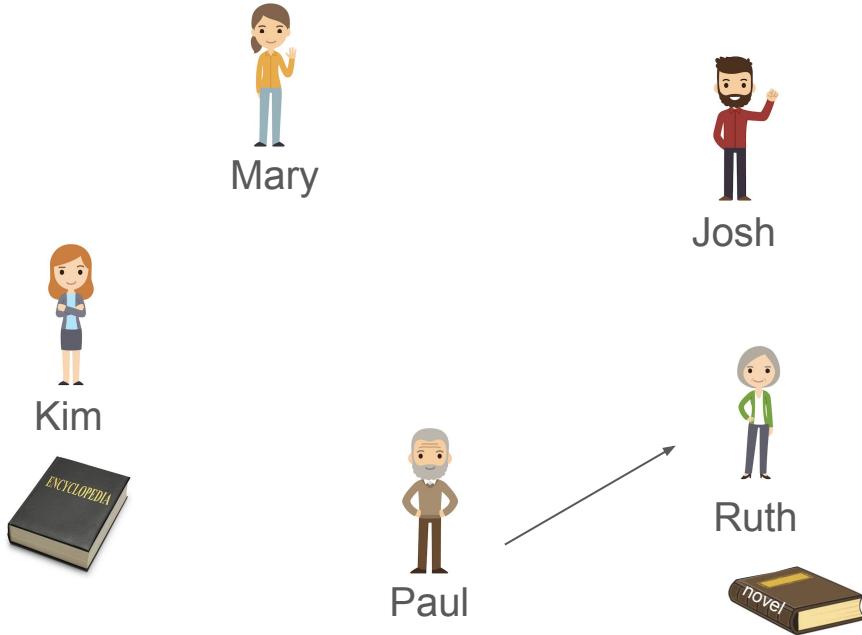
Paul had an encyclopedia.  
Mary had a novel.  
Paul gave his book to Josh.  
Mary gave her book to Paul.

# Can LLMs Track States?



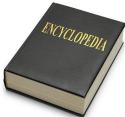
Paul had an encyclopedia.  
Mary had a novel.  
Paul gave his book to Josh.  
Mary gave her book to Paul.  
Josh gave his book to Kim.

# Can LLMs Track States?



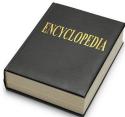
Paul had an encyclopedia.  
Mary had a novel.  
Paul gave his book to Josh.  
Mary gave her book to Paul.  
Josh gave his book to Kim.  
Paul gave his book to Ruth.

# Can LLMs Track States?



Paul had an encyclopedia.  
Mary had a novel.  
Paul gave his book to Josh.  
Mary gave her book to Paul.  
Josh gave his book to Kim.  
Paul gave his book to Ruth.  
Who has the encyclopedia?

# Can LLMs Track States?



Paul had an encyclopedia.  
Mary had a novel.  
Paul gave his book to Josh.  
Mary gave her book to Paul.  
Josh gave his book to Kim.  
Paul gave his book to Ruth.  
Who has the encyclopedia?

Answer: Kim has the encyclopedia.

# Can LLMs Track States?



Paul had an encyclopedia.

Mary had a novel.

Paul gave his book to Josh.

Mary gave her book to Paul.

Josh gave his book to Kim.

Paul gave his book to Ruth.

Who has the encyclopedia?

Answer: Kim has the encyclopedia.



Ruth has the encyclopedia.

ChatGPT-5 Instant, Aug 31, 2025.

# Can LLMs Track States?



Mary



Kim



1



Paul



Josh



Ruth



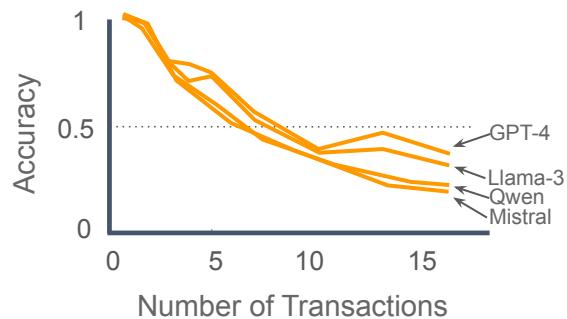
Models: gpt-4o-2024-08-06,  
meta-llama/Llama-3.3-70B-Instruct-Turbo,  
mistralai/Mistral-7B-Instruct-v0.3,  
Qwen/Qwen2.5-72B-Instruct-Turbo

Paul had an encyclopedia.  
Mary had a novel.  
Paul gave his book to Josh.  
Mary gave her book to Paul.  
Josh gave his book to Kim.  
Paul gave his book to Ruth.  
Who has the encyclopedia?

Answer: Kim has the encyclopedia.



Ruth has the encyclopedia.



*straight answer, no CoT*

Paul had an encyclopedia.

Mary had a novel.

Paul gave his book to Josh.

Mary gave her book to Paul.

Josh gave his book to Kim.

Paul gave his book to Ruth.

Who has the encyclopedia?

Please think step by step.

Got it — let's carefully trace the movements step by step:

1. Initial ownership:

- Paul → *encyclopedia*
- Mary → *novel*

2. Paul gave his book (*encyclopedia*) to Josh:

- Josh → *encyclopedia*
- Paul → nothing

3. Mary gave her book (*novel*) to Paul:

- Paul → *novel*
- Mary → nothing

4. Josh gave his book (*encyclopedia*) to Kim:

- Kim → *encyclopedia*
- Josh → nothing

5. Paul gave his book (*novel*) to Ruth:

- Ruth → *novel*
- Paul → nothing

Final ownership:

- Kim → *encyclopedia*
- Ruth → *novel*
- Paul, Mary, Josh → nothing

*correct!*

Answer: Kim has the *encyclopedia*.

Paul had an *encyclopedia*.

Mary had a *novel*.

Paul gave his book to Josh.

Mary gave her book to Paul.

Josh gave his book to Kim.

Paul gave his book to Ruth.

Who has the *encyclopedia*?

Please think step by step.

Got it — let's carefully trace the movements step by step:

1. **Initial ownership:**

- Paul → *encyclopedia*
- Mary → *novel*

2. **Paul gave his book (encyclopedia) to Josh:**

- Josh → *encyclopedia*
- Paul → nothing

3. **Mary gave her book (novel) to Paul:**

- Paul → *novel*
- Mary → nothing

4. **Josh gave his book (encyclopedia) to Kim:**

- Kim → *encyclopedia*
- Josh → nothing

5. **Paul gave his book (novel) to Ruth:**

- Ruth → *novel*
- Paul → nothing

**Final ownership:**

- Kim → *encyclopedia*
- Ruth → *novel*
- Paul, Mary, Josh → nothing

*correct!*

Answer: Kim has the *encyclopedia*.

Paul had an *encyclopedia*.

Mary had a *novel*.

Paul gave his book to Josh.

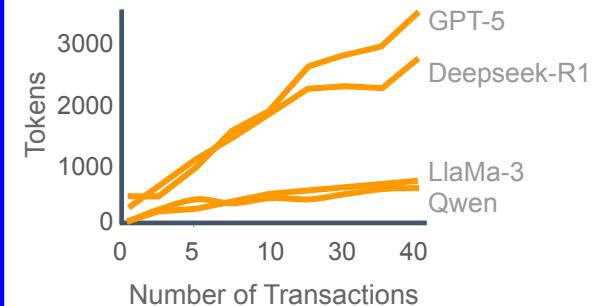
Mary gave her book to Paul.

Josh gave his book to Kim.

Paul gave his book to Ruth.

Who has the *encyclopedia*?

Please think step by step.



Models:

gpt-5-mini-2025-08-07,  
meta-llama/Llama-3.3-70B-Instruct-Turbo,  
deepseek-ai/DeepSeek-R1-Distill-Llama-70B,  
Qwen/Qwen2.5-72B-Instruct-Turbo

Basic Algorithmic  
Abilities

1-step

High-level Reasoning  
Abilities

CoT

## Basic Algorithmic Abilities

1-step

## High-level Reasoning Abilities

CoT

## Basic Algorithmic Abilities

1-step

## High-level Reasoning Abilities

CoT

Which abilities can  
transformers learn?

## Basic Algorithmic Abilities

1-step

Which abilities can transformers learn?

## High-level Reasoning Abilities

CoT

How costly is reasoning?

## Basic Algorithmic Abilities

1-step

Which abilities can  
transformers learn?

## High-level Reasoning Abilities

CoT

How costly is  
reasoning?

# A FORMAL FRAMEWORK FOR UNDERSTANDING LENGTH GENERALIZATION IN TRANSFORMERS

Xinting Huang<sup>1\*</sup> Andy Yang<sup>2\*</sup> Satwik Bhattacharya<sup>3</sup> Yash Sarrof<sup>1</sup>  
Andreas Krebs<sup>4</sup> Hattie Zhou<sup>5</sup> Preetum Nakkiran<sup>6</sup> Michael Hahn<sup>1†</sup>  
<sup>1</sup>Saarland University <sup>2</sup>University of Notre Dame <sup>3</sup>University of Oxford  
<sup>4</sup>University of Tübingen <sup>5</sup>Mila, Université de Montréal <sup>6</sup>Apple



# Born a Transformer – Always a Transformer? On the Effect of Pretraining on Architectural Abilities

Mayank Jobanputra<sup>1\*</sup>, Yana Veitsman<sup>1\*</sup>, Yash Sarrof<sup>1</sup>, Aleksandra Bakalova<sup>1</sup>,  
Vera Demberg<sup>1</sup>, Ellie Pavlick<sup>2</sup>, Michael Hahn<sup>1</sup>

<sup>1</sup>Saarland University <sup>2</sup>Brown University  
{mayank,mhahn}@lst.uni-saarland.de



ICLR 2025

NeurIPS 2025

|   |   |   |   |
|---|---|---|---|
| 0 | 1 | 1 | 0 |
|---|---|---|---|

PARITY

even



|   |   |   |   |
|---|---|---|---|
| 0 | 1 | 1 | 0 |
|---|---|---|---|

PARITY

odd



|   |   |   |   |
|---|---|---|---|
| 0 | 1 | 1 | 0 |
|---|---|---|---|

PARITY

even



|   |   |   |   |
|---|---|---|---|
| 0 | 1 | 1 | 0 |
|---|---|---|---|

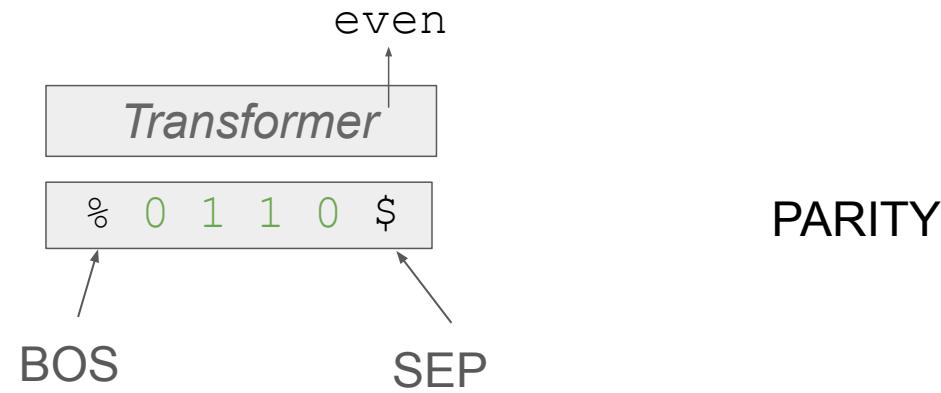
PARITY

even



|   |   |   |   |
|---|---|---|---|
| 0 | 1 | 1 | 0 |
|---|---|---|---|

PARITY



*Transformer*

% 0 1 1 0 \$ even @

**PARITY**

BOS

SEP

EOS

*Transformer*

% 0 1 1 0 \$ even @

PARITY

If we train transformer at  
lengths  $\leq N$ , ...

*Transformer*

‰ 0 1 1 0 1 1 1 0 1 \$

If we train transformer at  
lengths  $\leq N$ , ...

does it perform  
correctly at length  $2N$ ?

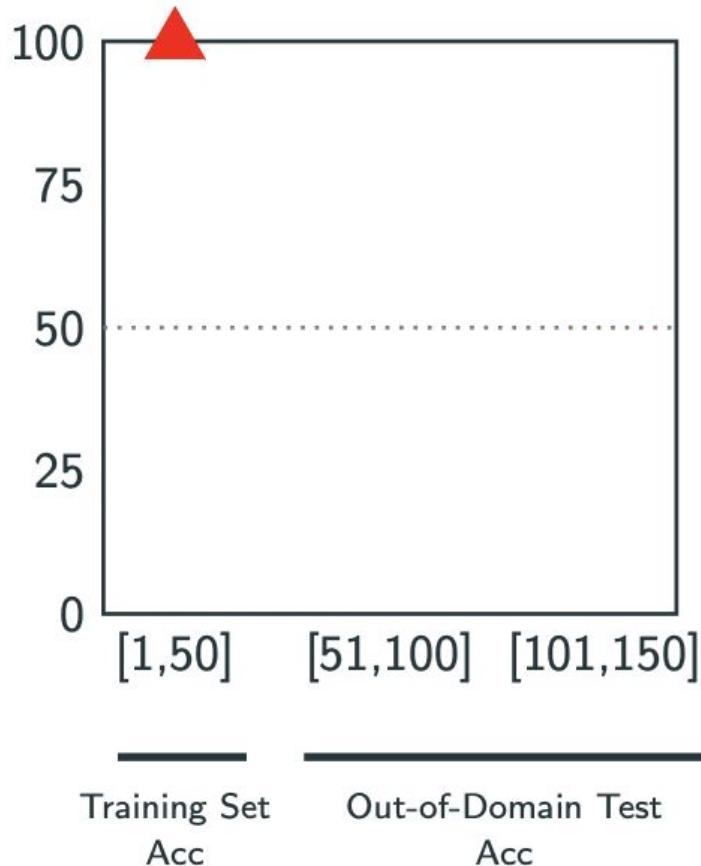
## *Transformer*

```
% 0 1 1 0 1 1 1 0 1 $ even @
```

If we train transformer at  
lengths  $\leq N$ , ...

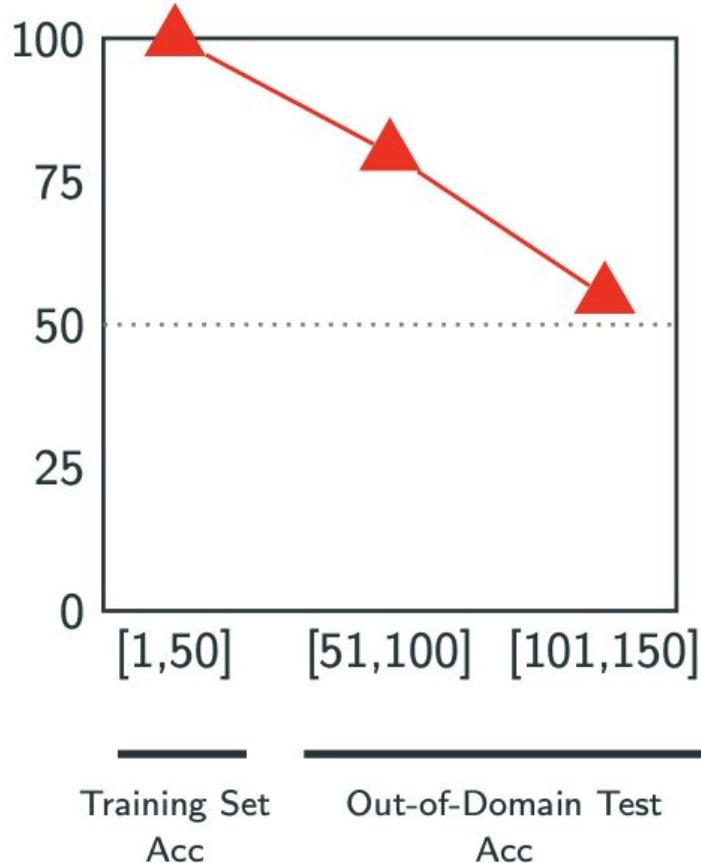
does it perform  
correctly at length  $2N$ ?

Not for  
this task!



Related results: Bhattamishra et al 2020; Anil et al 2022; Zhou et al 2024.

Not for  
this task!

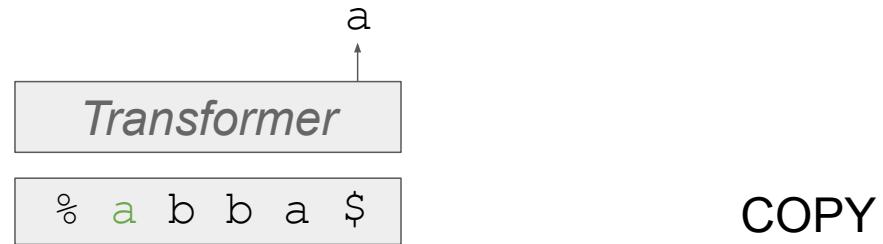


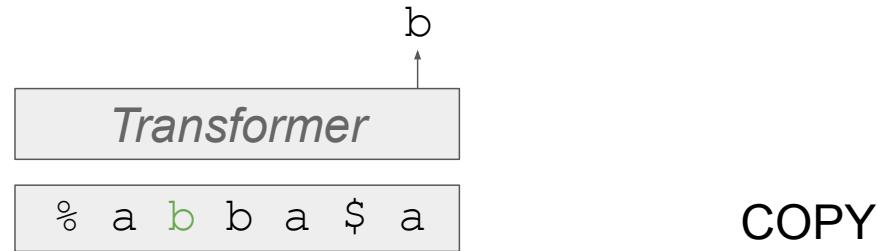
Related results: Bhattamishra et al 2020; Anil et al 2022; Zhou et al 2024.

*Transformer*

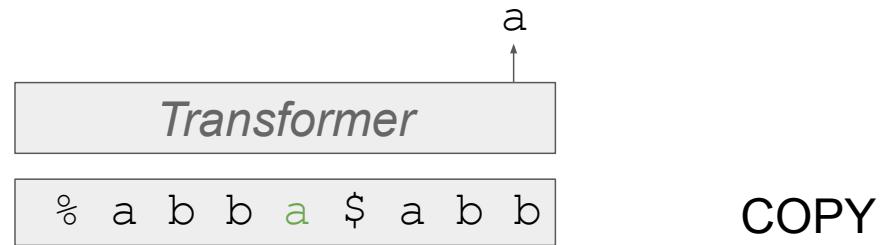
° a b b a \$

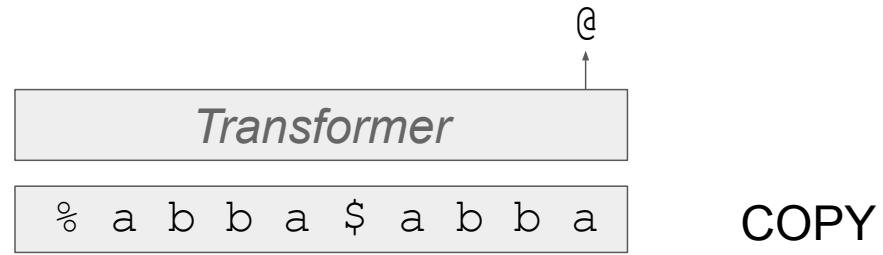
COPY











*Transformer*

%" a b b a \$ a b b a @

COPY

*Transformer*

%" a b b a \$ a b b a @

COPY

*Transformer*

% a b b a \$ a b b a @

COPY

If we train transformer at  
lengths  $\leq N$ , ...

*Transformer*

% b a b b a b b b a \$

If we train transformer at  
lengths  $\leq N$ , ...

does it perform  
correctly at length  $2N$ ?

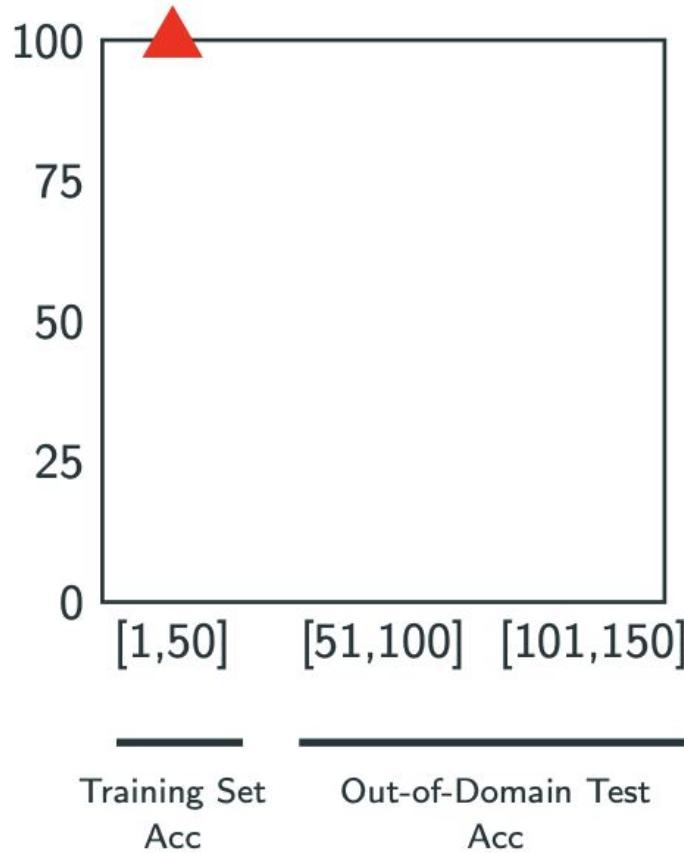
## *Transformer*

%; b a b b a b b b a \$ b a b b a b b b a @

If we train transformer at  
lengths  $\leq N$ , ...

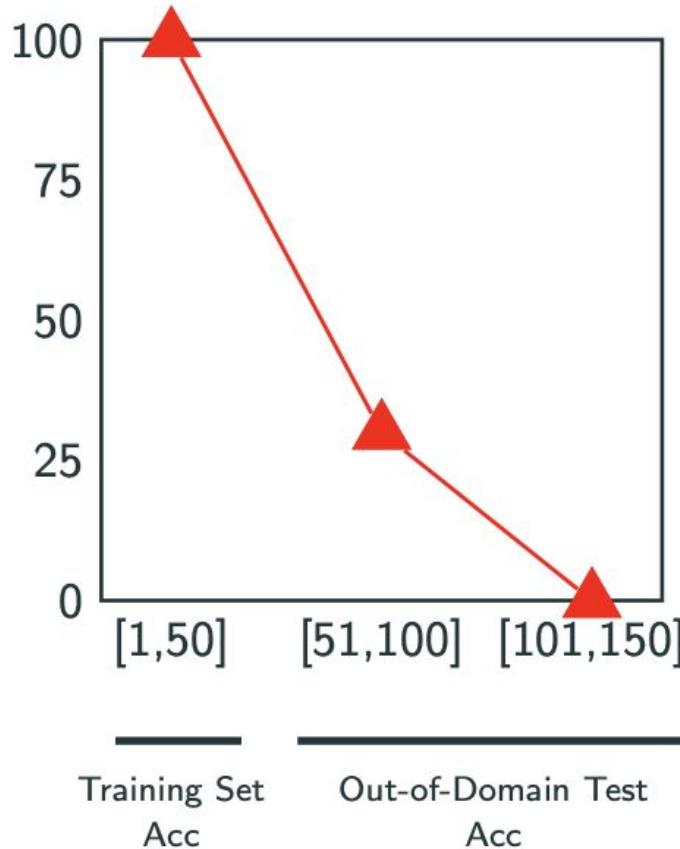
does it perform  
correctly at length  $2N$ ?

Not for  
this task!



Related results: Zhou et al 2024 ICLR; Jelassi et al 2024 ICML; Kazemnejad et al 2023 NeurIPS.<sup>7</sup>

Not for  
this task!



Related results: Zhou et al 2024 ICLR; Jelassi et al 2024 ICML; Kazemnejad et al 2023 NeurIPS.<sup>7</sup>

*Transformer*

o u r s z \$ u r s z @

COPY UNIQUE

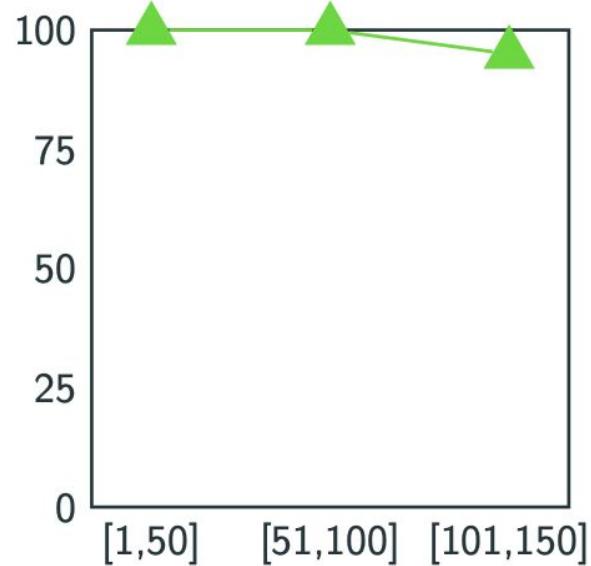
but for many  
other tasks, it  
works!

*Transformer*

° u r s z \$ u r s z @

COPY UNIQUE

but for many  
other tasks, it  
works!



Related results: Zhou et al 2024  
ICLR; Jelassi et al 2024 ICML.8

On which tasks do transformers length-generalize?

# WHAT ALGORITHMS CAN TRANSFORMERS LEARN? A STUDY IN LENGTH GENERALIZATION

Hattie Zhou<sup>\*1,2</sup>, Arwen Bradley<sup>1</sup>, Eta Littwin<sup>1</sup>, Noam Razin<sup>\*1,3</sup>, Omid Saremi<sup>1</sup>,  
Josh Susskind<sup>1</sup>, Samy Bengio<sup>1</sup>, and Preetum Nakkiran<sup>1</sup>

WHAT ALGORITHMS CAN TRANSFORMERS LEARN?  
A STUDY IN LENGTH GENERALIZATION

Hattie Zhou<sup>\*1,2</sup>, Arwen Bradley<sup>1</sup>, Eta Littwin<sup>1</sup>, Noam Razin<sup>\*1,3</sup>, Omid Saremi<sup>1</sup>,  
Josh Susskind<sup>1</sup>, Samy Bengio<sup>1</sup>, and Preetum Nakkiran<sup>1</sup>

RASP-L Conjecture (paraphrased):  
Transformers length-generalize on problems with  
simple programs in the RASP-L language.

WHAT ALGORITHMS CAN TRANSFORMERS LEARN?  
A STUDY IN LENGTH GENERALIZATION

Hattie Zhou<sup>\*1,2</sup>, Arwen Bradley<sup>1</sup>, Eta Littwin<sup>1</sup>, Noam Razin<sup>\*1,3</sup>, Omid Saremi<sup>1</sup>,  
Josh Susskind<sup>1</sup>, Samy Bengio<sup>1</sup>, and Preetum Nakkiran<sup>1</sup>

RASP-L Conjecture (paraphrased):  
Transformers length-generalize on problems with  
simple programs in the RASP-L language.

Challenge: RASP-L hasn't been formalized. Expressiveness not understood.

WHAT ALGORITHMS CAN TRANSFORMERS LEARN?  
A STUDY IN LENGTH GENERALIZATION

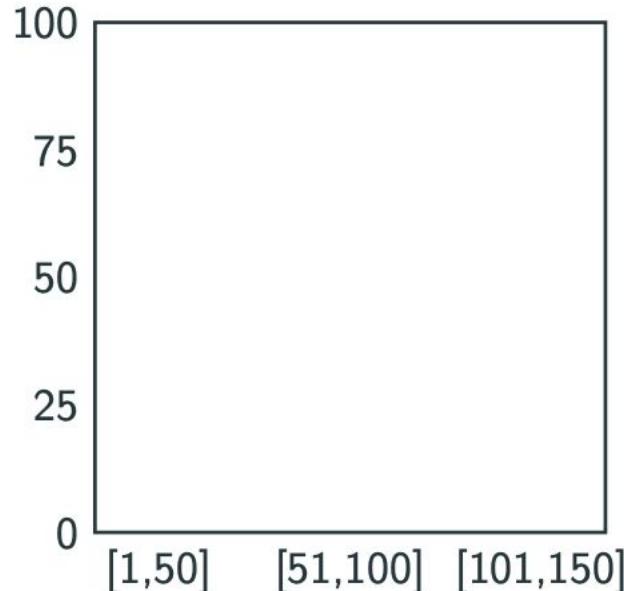
Hattie Zhou<sup>\*1,2</sup>, Arwen Bradley<sup>1</sup>, Eta Littwin<sup>1</sup>, Noam Razin<sup>\*1,3</sup>, Omid Saremi<sup>1</sup>,  
Josh Susskind<sup>1</sup>, Samy Bengio<sup>1</sup>, and Preetum Nakkiran<sup>1</sup>

RASP-L Conjecture (paraphrased):  
Transformers length-generalize on problems with  
simple programs in the RASP-L language.

Challenge: RASP-L hasn't been formalized. Expressiveness not understood.

Our First Contribution: Formalize it based on C-RASP.

## Binary Majority

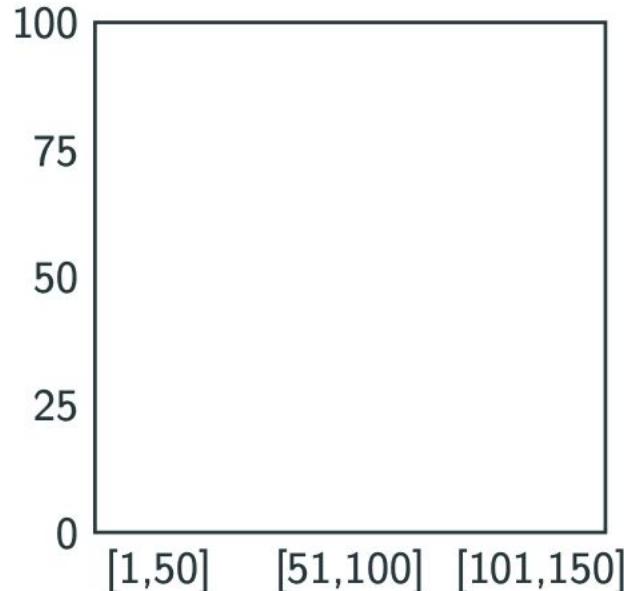


%, 0 0 1 1 0 1 1 1 0 \$

Training Set  
Acc

Out-of-Domain Test  
Acc

## Binary Majority

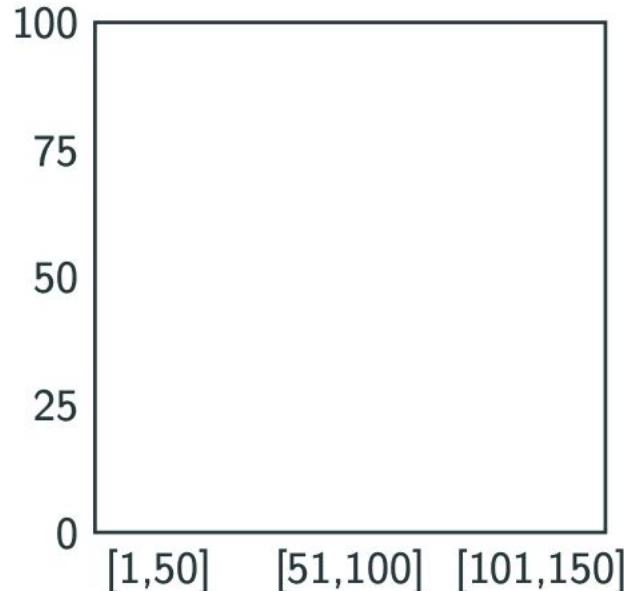


%, 0 0 1 1 0 1 1 1 0 \$

Training Set  
Acc

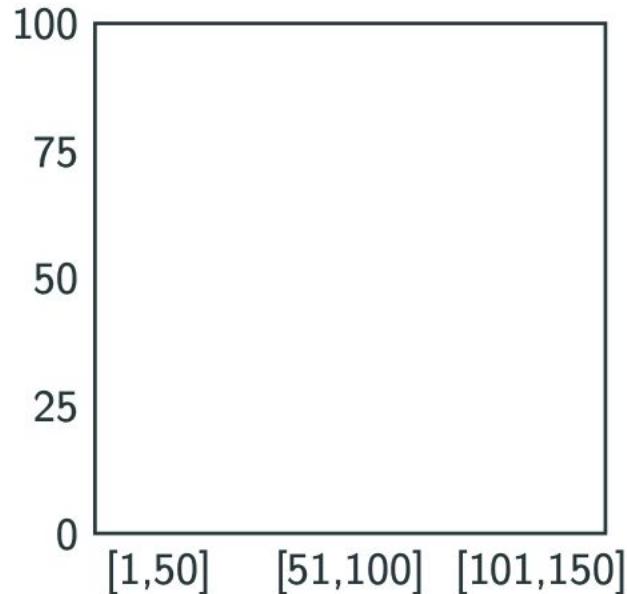
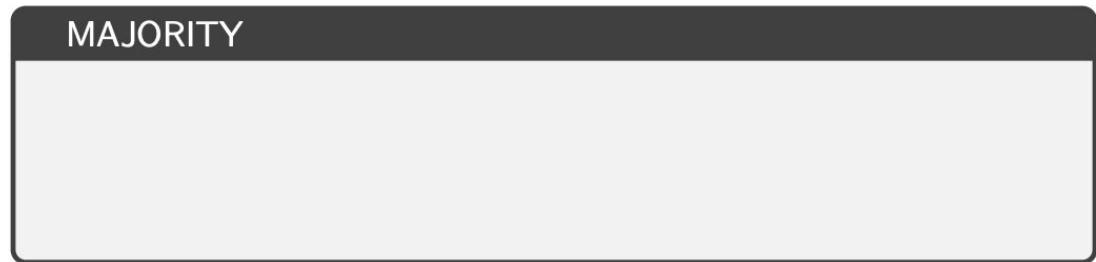
Out-of-Domain Test  
Acc

## Binary Majority



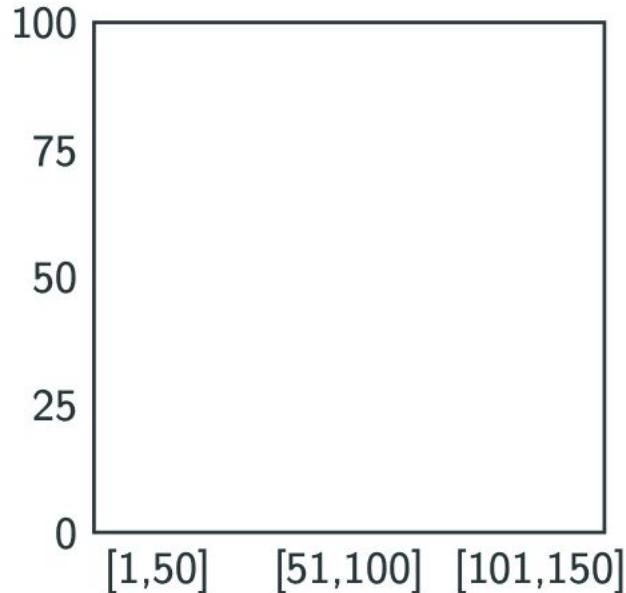
₡ 0 0 1 1 0 1 1 1 0 \$ T @

## Binary Majority



₡ 0 0 1 1 0 1 1 1 0 \$

## Binary Majority



### MAJORITY

$C_1(i) := \# [j \leq i] Q_1(j)$

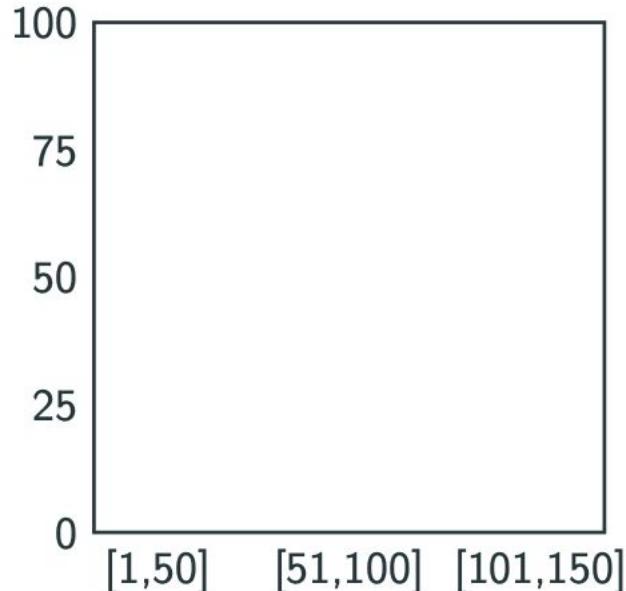
count # of 1's (1)

₡ 0 0 1 1 0 1 1 1 0 \$

Training Set  
Acc

Out-of-Domain Test  
Acc

## Binary Majority



### MAJORITY

$$C_1(i) := \# [j \leq i] Q_1(j)$$

count # of 1's (1)

0 0 1 1 0 1 1 1 0 \$

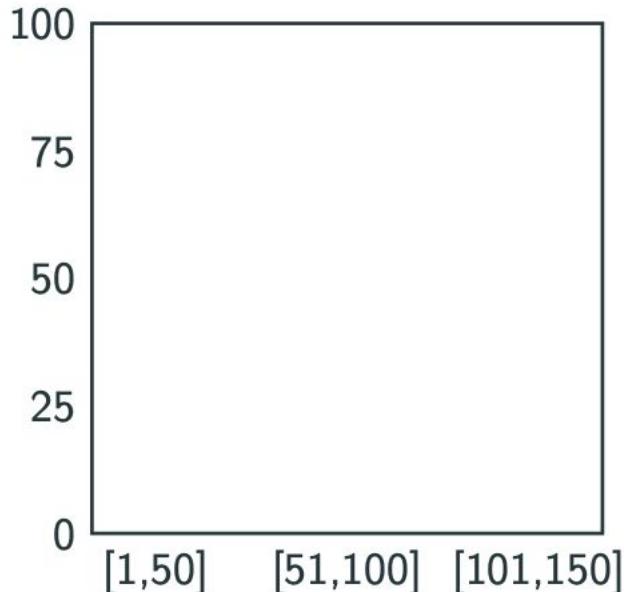
$$C_1(i) \ 0 \ 0$$

*running count of 1s*

Training Set  
Acc

Out-of-Domain Test  
Acc

## Binary Majority



### MAJORITY

$$C_1(i) := \# [j \leq i] Q_1(j)$$

count # of 1's (1)

₡ 0 0 1 1 0 1 1 1 0 \$

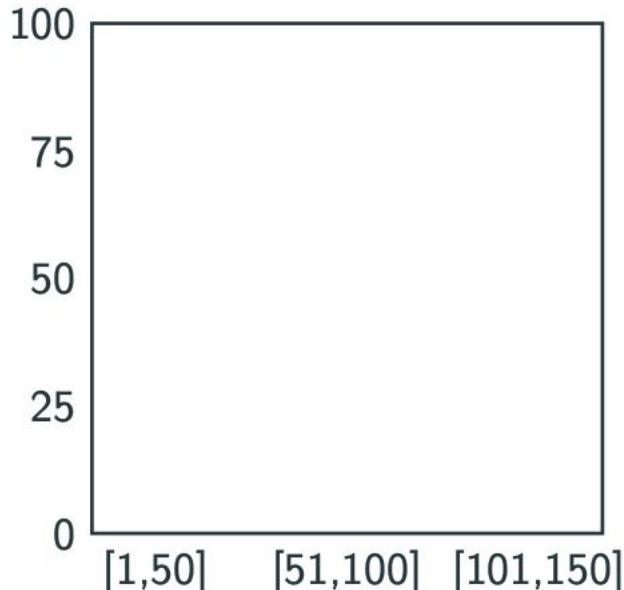
$$C_1(i) \quad 0 \quad 0 \quad 0$$

*running count of 1s*

Training Set  
Acc

Out-of-Domain Test  
Acc

## Binary Majority



### MAJORITY

$$C_1(i) := \# [j \leq i] Q_1(j)$$

count # of 1's (1)

օ 0 0 1 1 0 1 1 1 0 \$

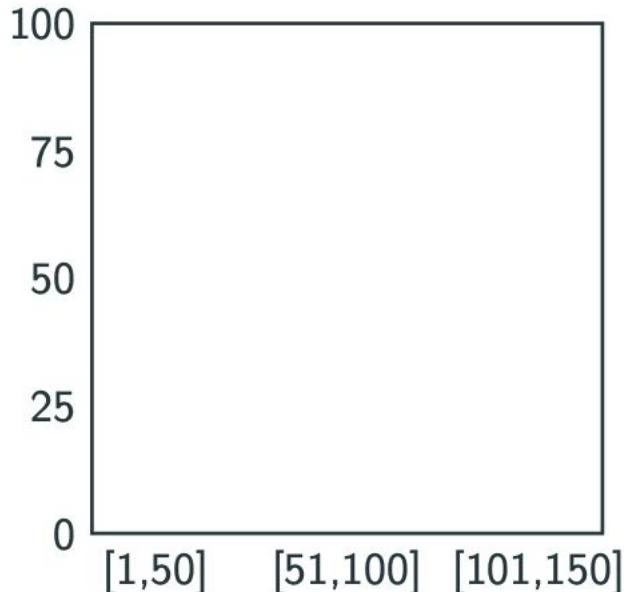
$$C_1(i) \quad 0 \quad 0 \quad 0 \quad 1$$

*running count of 1s*

Training Set  
Acc

Out-of-Domain Test  
Acc

## Binary Majority



### MAJORITY

$$C_1(i) := \# [j \leq i] Q_1(j)$$

count # of 1's (1)

օ 0 0 1 1 0 1 1 1 0 \$

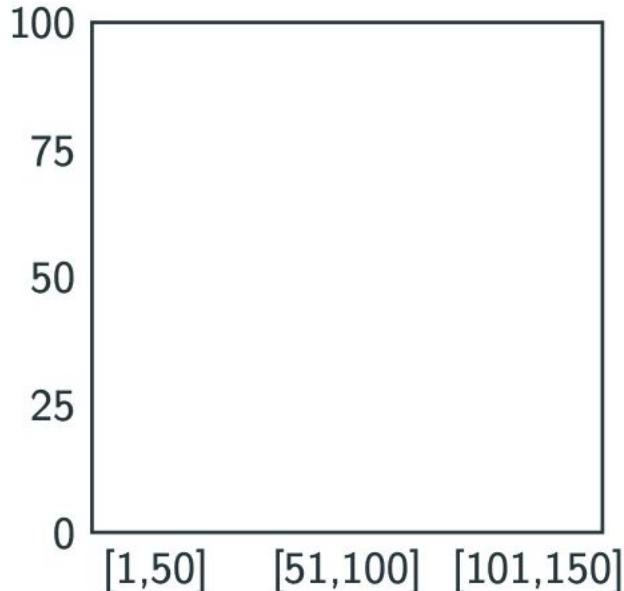
$$C_1(i) \quad 0 \quad 0 \quad 0 \quad 1 \quad 2$$

*running count of 1s*

Training Set  
Acc

Out-of-Domain Test  
Acc

## Binary Majority



### MAJORITY

$$C_1(i) := \# [j \leq i] Q_1(j)$$

count # of 1's (1)

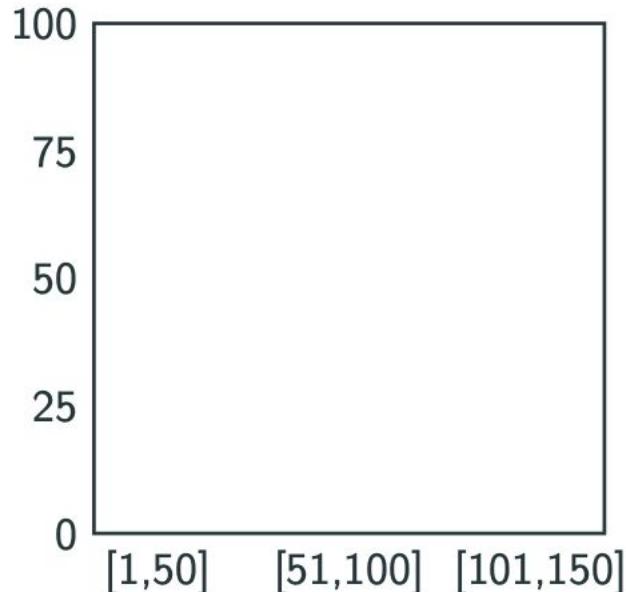
$$\begin{array}{r} \% \ 0 \ 0 \ 1 \ 1 \ \mathbf{0} \ 1 \ 1 \ 1 \ 0 \ \$ \\ \hline C_1(i) \ 0 \ 0 \ 0 \ 1 \ 2 \ 2 \end{array}$$

*running count of 1s*

Training Set  
Acc

Out-of-Domain Test  
Acc

## Binary Majority



### MAJORITY

$$C_1(i) := \# [j \leq i] Q_1(j)$$

count # of 1's (1)

₡ 0 0 1 1 0 **1** 1 1 0 \$

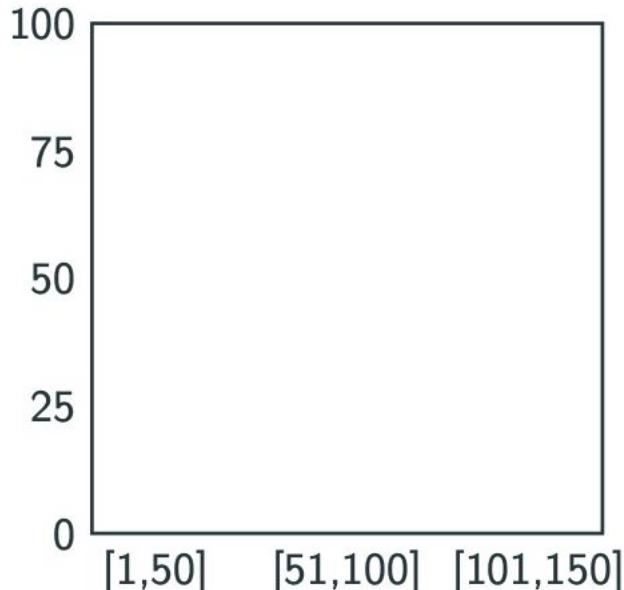
$$C_1(i) \quad 0 \quad 0 \quad 0 \quad 1 \quad 2 \quad 2 \quad 3$$

*running count of 1s*

Training Set  
Acc

Out-of-Domain Test  
Acc

## Binary Majority



### MAJORITY

$$C_1(i) := \# [j \leq i] Q_1(j)$$

count # of 1's (1)

₡ 0 0 1 1 0 1 1 0 \$

$$C_1(i) \quad 0 \quad 0 \quad 0 \quad 1 \quad 2 \quad 2 \quad 3 \quad 4$$

*running count of 1s*

Training Set  
Acc

Out-of-Domain Test  
Acc

## Binary Majority



### MAJORITY

$$C_1(i) := \# [j \leq i] Q_1(j)$$

count # of 1's (1)

₡ 0 0 1 1 0 1 1 1 0 \$

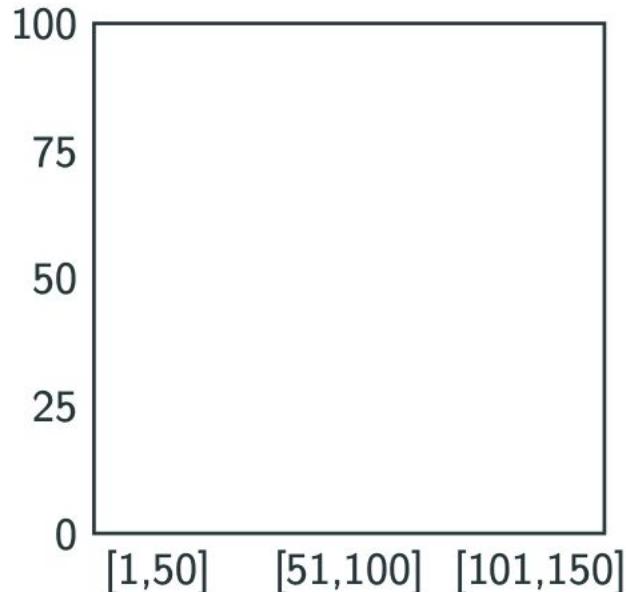
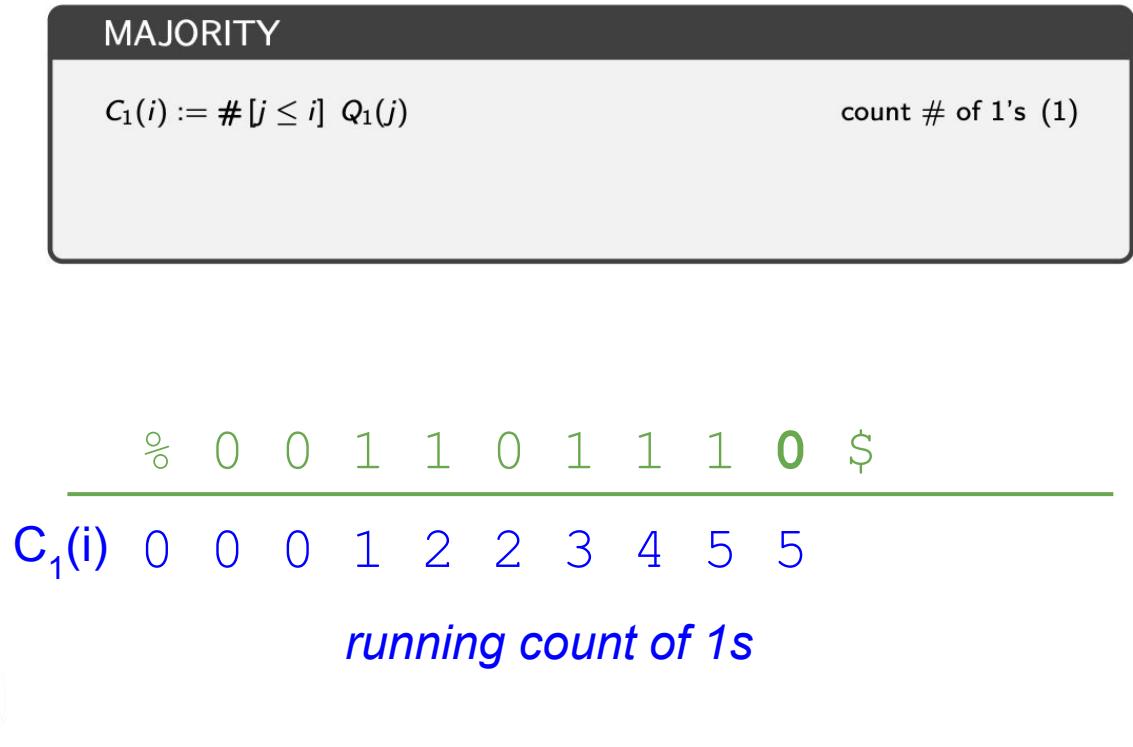
$$C_1(i) \quad 0 \quad 0 \quad 0 \quad 1 \quad 2 \quad 2 \quad 3 \quad 4 \quad 5$$

*running count of 1s*

Training Set  
Acc

Out-of-Domain Test  
Acc

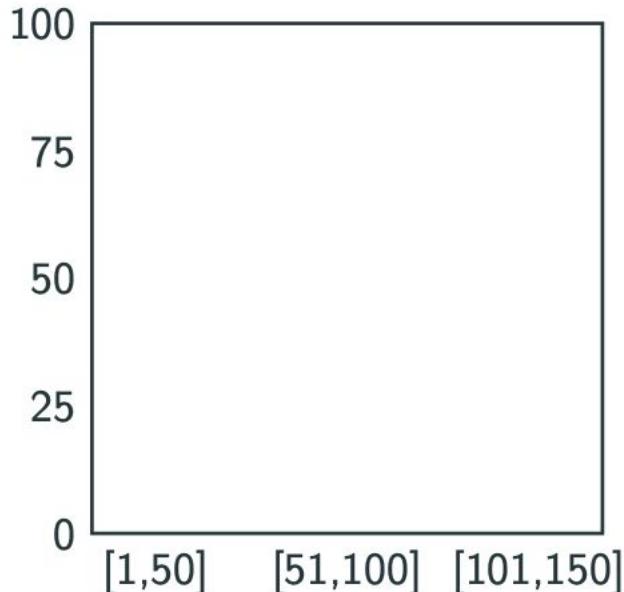
## Binary Majority



Training Set  
Acc

Out-of-Domain Test  
Acc

## Binary Majority



MAJORITY

$$C_1(i) := \# [j \leq i] Q_1(j)$$

count # of 1's (1)

0 0 0 1 1 0 1 1 1 0 \$

---

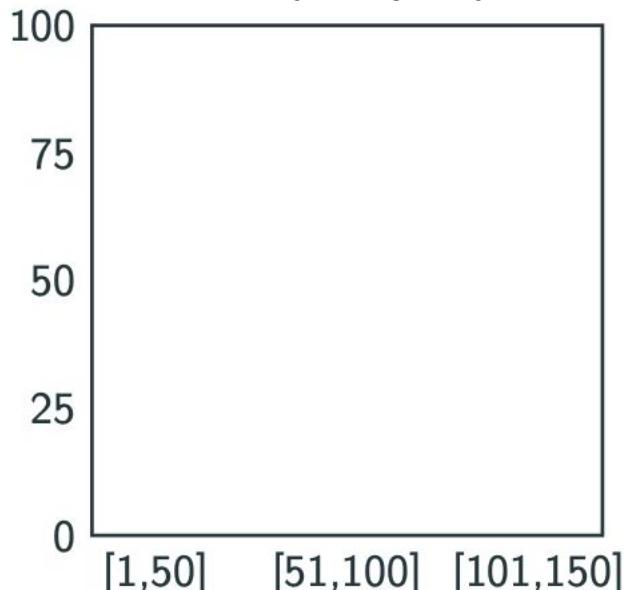
$$C_1(i) \quad 0 \quad 0 \quad 0 \quad 1 \quad 2 \quad 2 \quad 3 \quad 4 \quad 5 \quad 5 \quad 5$$

*running count of 1s*

Training Set  
Acc

Out-of-Domain Test  
Acc

## Binary Majority



### MAJORITY

$$C_1(i) := \# [j \leq i] Q_1(j)$$

count # of 1's (1)

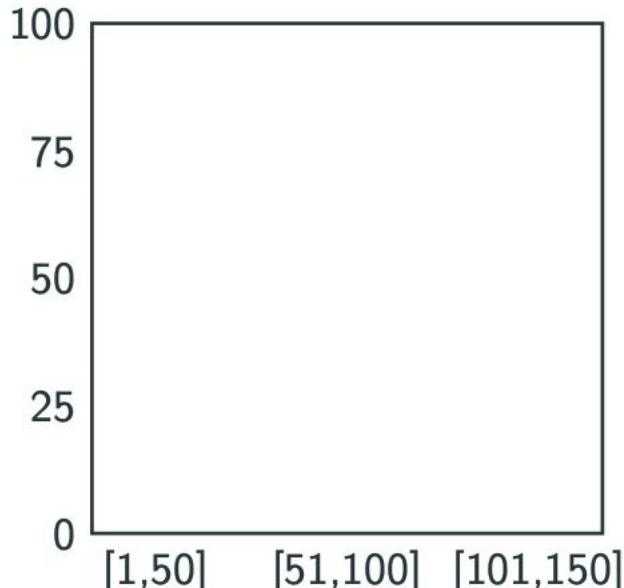
$$C_0(i) := \# [j \leq i] Q_0(j)$$

count # of 0's (2)

$$\begin{array}{r} \% \quad 0 \quad 0 \quad 1 \quad 1 \quad 0 \quad 1 \quad 1 \quad 1 \quad 0 \quad \$ \\ \hline C_1(i) \quad 0 \quad 0 \quad 0 \quad 1 \quad 2 \quad 2 \quad 3 \quad 4 \quad 5 \quad 5 \\ C_0(i) \quad 0 \end{array}$$

*running count of 0s*

## Binary Majority



### MAJORITY

$$C_1(i) := \# [j \leq i] Q_1(j)$$

count # of 1's (1)

$$C_0(i) := \# [j \leq i] Q_0(j)$$

count # of 0's (2)

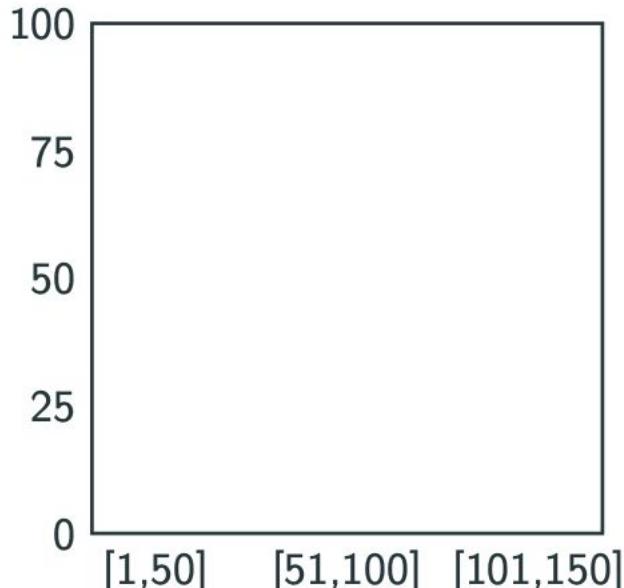
$$\begin{array}{r} \% \quad 0 \quad 0 \quad 1 \quad 1 \quad 0 \quad 1 \quad 1 \quad 1 \quad 0 \quad \$ \\ \hline C_1(i) \quad 0 \quad 0 \quad 0 \quad 1 \quad 2 \quad 2 \quad 3 \quad 4 \quad 5 \quad 5 \\ C_0(i) \quad 0 \quad 1 \end{array}$$

*running count of 0s*

Training Set  
Acc

Out-of-Domain Test  
Acc

## Binary Majority



### MAJORITY

$$C_1(i) := \# [j \leq i] Q_1(j)$$

count # of 1's (1)

$$C_0(i) := \# [j \leq i] Q_0(j)$$

count # of 0's (2)

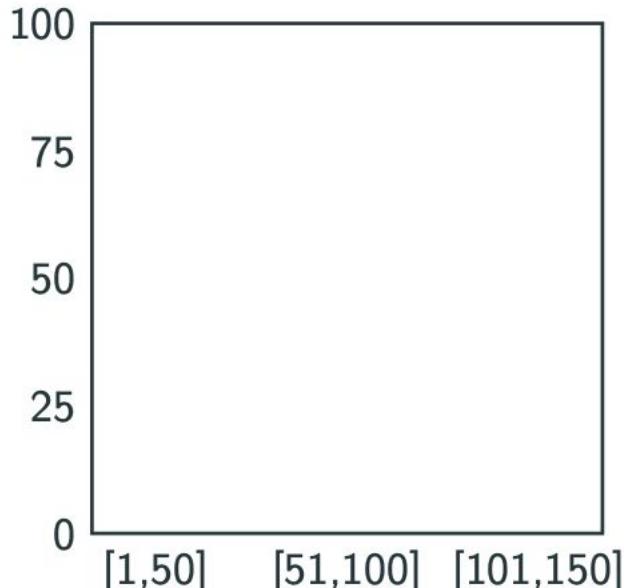
$$\begin{array}{r} \% \quad 0 \quad \mathbf{0} \quad 1 \quad 1 \quad 0 \quad 1 \quad 1 \quad 1 \quad 0 \quad \$ \\ \hline C_1(i) \quad 0 \quad 0 \quad 0 \quad 1 \quad 2 \quad 2 \quad 3 \quad 4 \quad 5 \quad 5 \\ C_0(i) \quad 0 \quad 1 \quad 2 \end{array}$$

*running count of 0s*

Training Set  
Acc

Out-of-Domain Test  
Acc

## Binary Majority



### MAJORITY

$$C_1(i) := \# [j \leq i] Q_1(j)$$

count # of 1's (1)

$$C_0(i) := \# [j \leq i] Q_0(j)$$

count # of 0's (2)

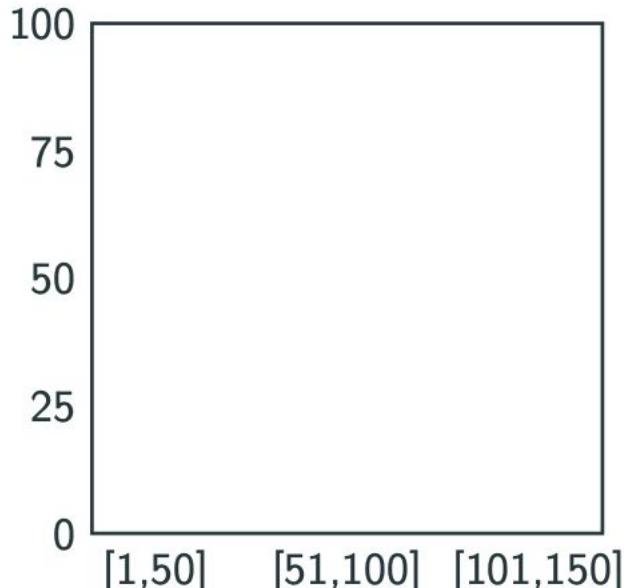
|          |   |   |   |   |          |   |   |   |   |    |
|----------|---|---|---|---|----------|---|---|---|---|----|
| %        | 0 | 0 | 1 | 1 | <b>0</b> | 1 | 1 | 1 | 0 | \$ |
| $C_1(i)$ | 0 | 0 | 0 | 1 | 2        | 2 | 3 | 4 | 5 | 5  |
| $C_0(i)$ | 0 | 1 | 2 | 2 | 2        | 3 |   |   |   |    |

*running count of 0s*

Training Set  
Acc

Out-of-Domain Test  
Acc

## Binary Majority



### MAJORITY

$$C_1(i) := \# [j \leq i] Q_1(j)$$

count # of 1's (1)

$$C_0(i) := \# [j \leq i] Q_0(j)$$

count # of 0's (2)

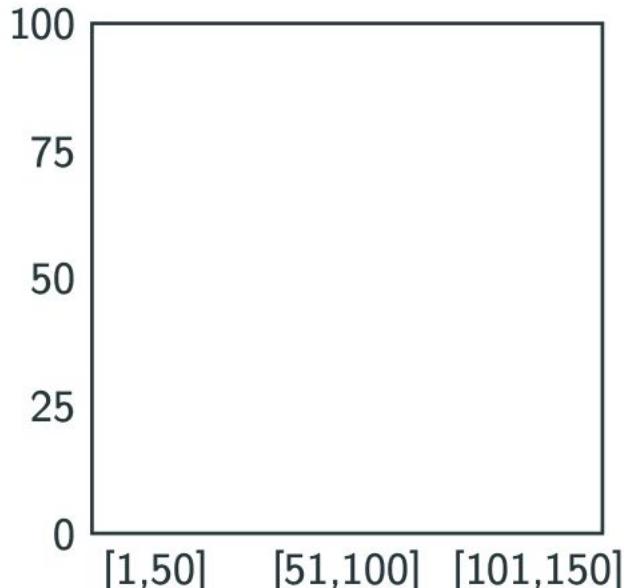
|          |   |   |   |   |   |   |   |   |   |   |    |
|----------|---|---|---|---|---|---|---|---|---|---|----|
|          | % | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | \$ |
| $C_1(i)$ | 0 | 0 | 0 | 1 | 2 | 2 | 3 | 4 | 5 | 5 | 5  |
| $C_0(i)$ | 0 | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 4 |    |

*running count of 0s*

Training Set  
Acc

Out-of-Domain Test  
Acc

## Binary Majority



### MAJORITY

$$C_1(i) := \# [j \leq i] Q_1(j)$$

count # of 1's (1)

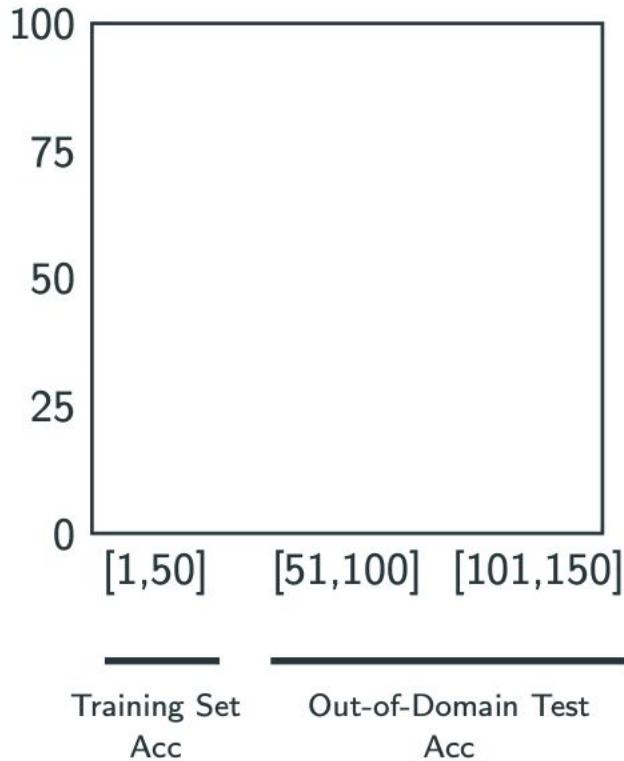
$$C_0(i) := \# [j \leq i] Q_0(j)$$

count # of 0's (2)

|          |   |   |   |   |   |   |   |   |   |    |
|----------|---|---|---|---|---|---|---|---|---|----|
| %        | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | \$ |
| $C_1(i)$ | 0 | 0 | 0 | 1 | 2 | 2 | 3 | 4 | 5 | 5  |
| $C_0(i)$ | 0 | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 4 | 4  |

*running count of 0s*

## Binary Majority



### MAJORITY

$$C_1(i) := \# [j \leq i] Q_1(j)$$

count # of 1's (1)

$$C_0(i) := \# [j \leq i] Q_0(j)$$

count # of 0's (2)

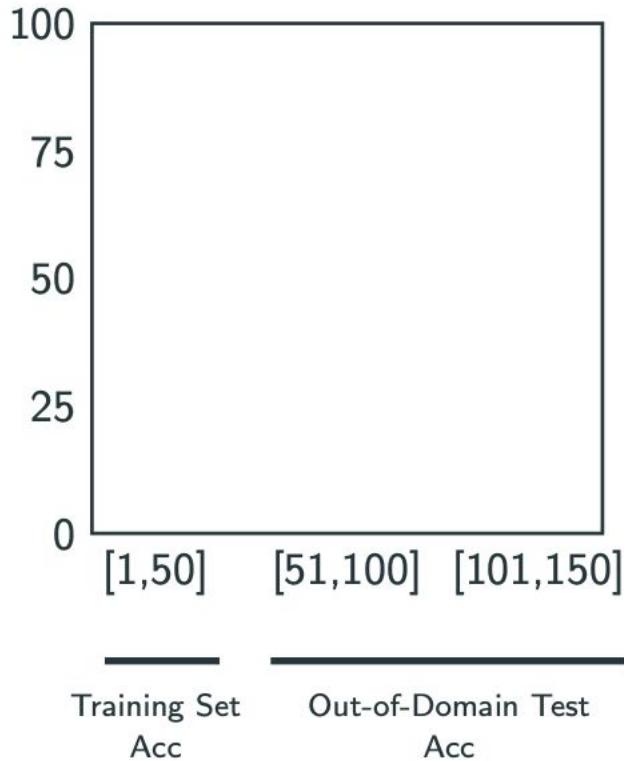
$$M(i) := C_1(i) \geq C_0(i)$$

compare them (3)

|          |          |          |          |          |   |   |   |   |   |    |
|----------|----------|----------|----------|----------|---|---|---|---|---|----|
| %        | 0        | 0        | 1        | 1        | 0 | 1 | 1 | 1 | 0 | \$ |
| $C_1(i)$ | 0        | 0        | 0        | 1        | 2 | 2 | 3 | 4 | 5 | 5  |
| $C_0(i)$ | 0        | 1        | 2        | 2        | 2 | 3 | 3 | 3 | 4 | 4  |
| $M(i)$   | <b>F</b> | <b>F</b> | <b>F</b> | <b>F</b> |   |   |   |   |   |    |

*compare them*

## Binary Majority



### MAJORITY

$$C_1(i) := \# [j \leq i] Q_1(j)$$

count # of 1's (1)

$$C_0(i) := \# [j \leq i] Q_0(j)$$

count # of 0's (2)

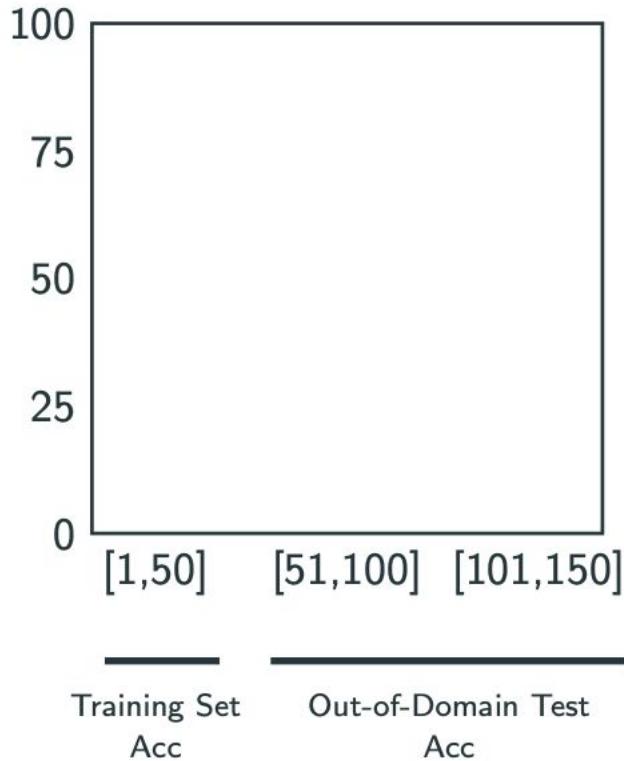
$$M(i) := C_1(i) \geq C_0(i)$$

compare them (3)

|          |   |   |   |   |   |   |   |   |   |   |    |
|----------|---|---|---|---|---|---|---|---|---|---|----|
|          | % | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | \$ |
| $C_1(i)$ | 0 | 0 | 0 | 1 | 2 | 2 | 3 | 4 | 5 | 5 | 5  |
| $C_0(i)$ | 0 | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 4 | 4 | 4  |
| $M(i)$   | T | F | F | F | T | F | T | T | T | T | T  |

*compare them*

## Binary Majority



### MAJORITY

$$C_1(i) := \# [j \leq i] Q_1(j)$$

count # of 1's (1)

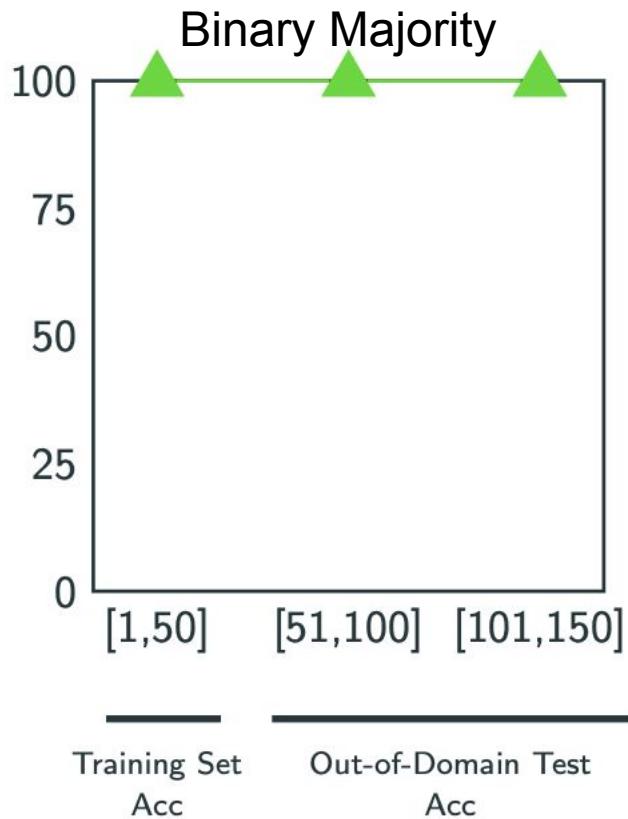
$$C_0(i) := \# [j \leq i] Q_0(j)$$

count # of 0's (2)

$$M(i) := C_1(i) \geq C_0(i)$$

compare them (3)

|          | % | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | \$ | <b>T</b> | @ |
|----------|---|---|---|---|---|---|---|---|---|---|----|----------|---|
| $C_1(i)$ | 0 | 0 | 0 | 1 | 2 | 2 | 3 | 4 | 5 | 5 | 5  |          |   |
| $C_0(i)$ | 0 | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 4 | 4  |          |   |
| $M(i)$   | T | F | F | F | T | F | T | T | T | T | T  | <b>T</b> |   |



MAJORITY

$$C_1(i) := \# [j \leq i] Q_1(j)$$

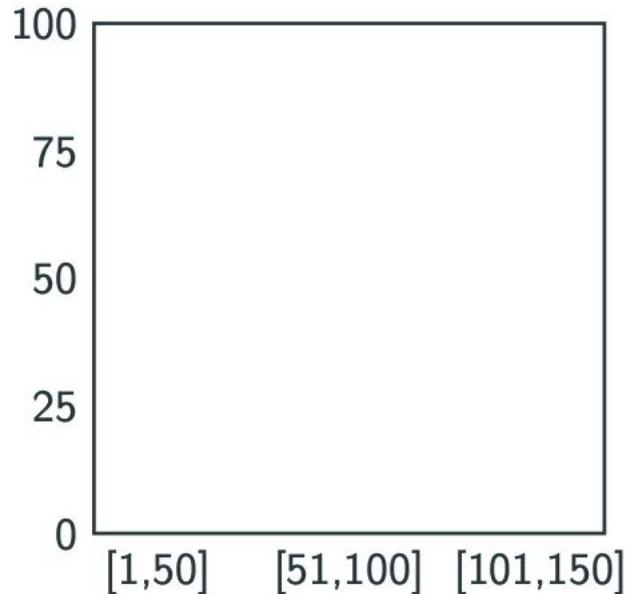
$$C_0(i) := \# [j \leq i] Q_0(j)$$

$$M(i) := C_1(i) \geq C_0(i)$$

count # of 1's (1)  
 count # of 0's (2)  
 compare them (3)

|          | % | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | \$ | T | @ |
|----------|---|---|---|---|---|---|---|---|---|---|----|---|---|
| $C_1(i)$ | 0 | 0 | 0 | 1 | 2 | 2 | 3 | 4 | 5 | 5 | 5  |   |   |
| $C_0(i)$ | 0 | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 4 | 4  |   |   |
| $M(i)$   | T | F | F | F | T | F | T | T | T | T | T  |   |   |

## Unique Copy



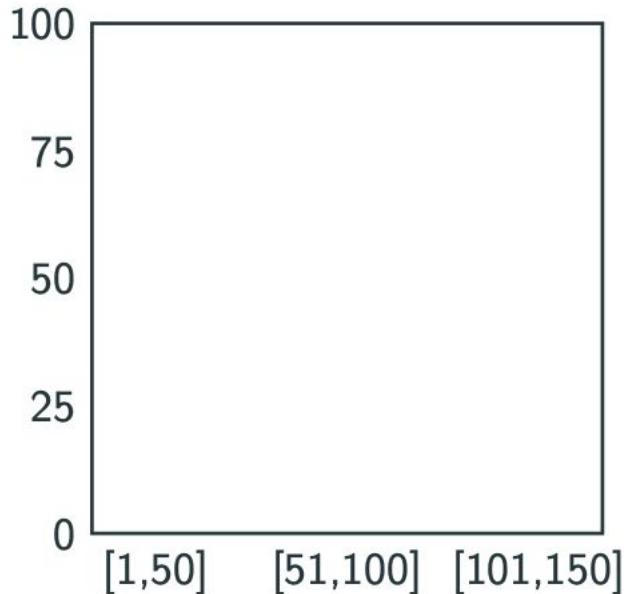
%, u, r, s, z, \$, u, ...

collect  
immediately  
preceding  
token

Training Set  
Acc

Out-of-Domain Test  
Acc

## Unique Copy



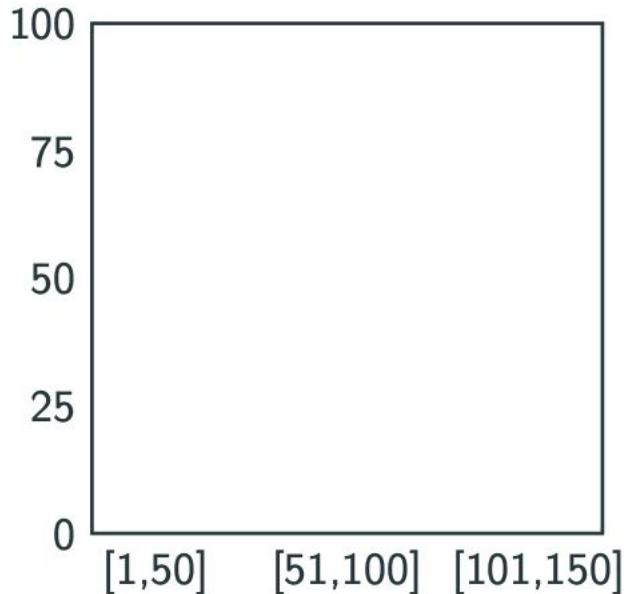
|          | % | u | r | s | z | \$ | u | ... |
|----------|---|---|---|---|---|----|---|-----|
| prev = u | 0 | 0 | 1 | 0 | 0 | 0  | 0 | 0   |

collect  
immediately  
preceding  
token

Training Set  
Acc

Out-of-Domain Test  
Acc

## Unique Copy



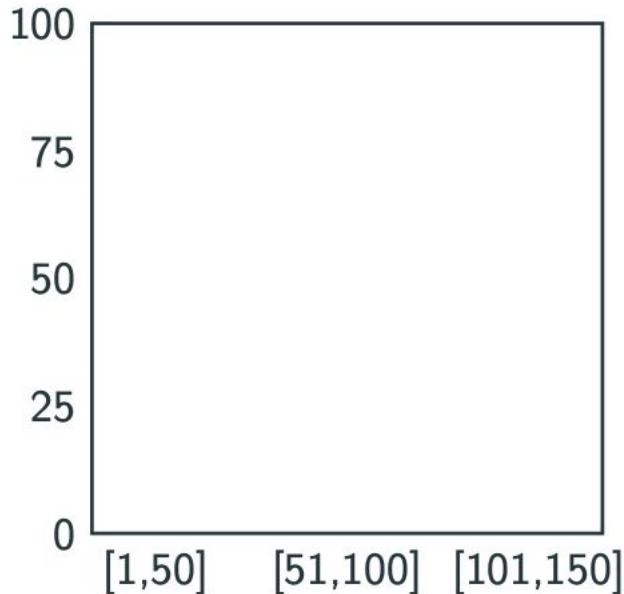
Training Set  
Acc

Out-of-Domain Test  
Acc

|          | % | u | r | s | z | \$ | u | ... |
|----------|---|---|---|---|---|----|---|-----|
| prev = u | 0 | 0 | 1 | 0 | 0 | 0  | 0 | 0   |
| prev = r | 0 | 0 | 0 | 1 | 0 | 0  | 0 | 0   |

collect  
immediately  
preceding  
token

## Unique Copy



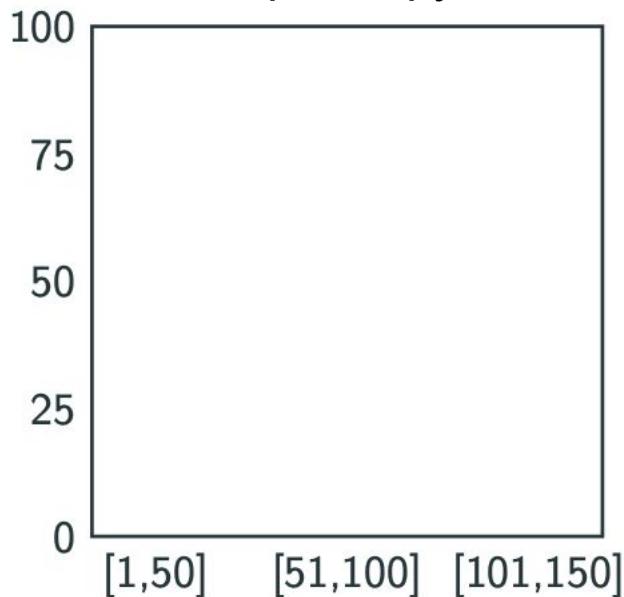
Training Set  
Acc

Out-of-Domain Test  
Acc

|          | % | u | r | s | z | \$ | u | ... |
|----------|---|---|---|---|---|----|---|-----|
| prev = u | 0 | 0 | 1 | 0 | 0 | 0  | 0 | 0   |
| prev = r | 0 | 0 | 0 | 1 | 0 | 0  | 0 | 0   |
| prev = s | 0 | 0 | 0 | 0 | 1 | 0  | 0 | 0   |

collect  
immediately  
preceding  
token

## Unique Copy



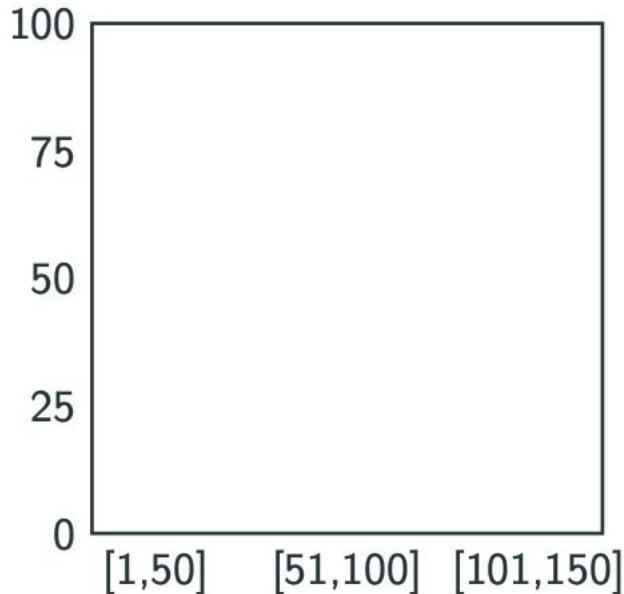
Training Set  
Acc

Out-of-Domain Test  
Acc

|          | % | u | r | s | z | \$ | u | ... |
|----------|---|---|---|---|---|----|---|-----|
| prev = u | 0 | 0 | 1 | 0 | 0 | 0  | 0 |     |
| prev = r | 0 | 0 | 0 | 1 | 0 | 0  | 0 |     |
| prev = s | 0 | 0 | 0 | 0 | 1 | 0  | 0 |     |
| prev = z | 0 | 0 | 0 | 0 | 0 | 1  | 0 |     |

collect  
immediately  
preceding  
token

## Unique Copy



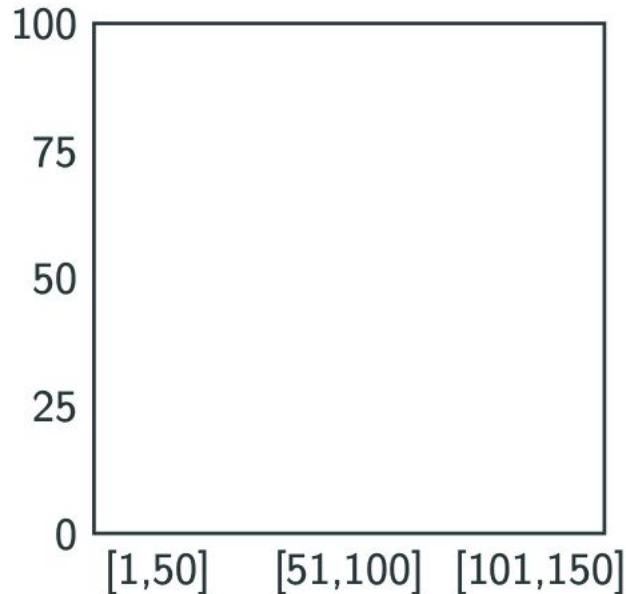
|          | % | u | r | s | z | \$ | u | ... |
|----------|---|---|---|---|---|----|---|-----|
| prev = u | 0 | 0 | 1 | 0 | 0 | 0  | 0 | 0   |
| prev = r | 0 | 0 | 0 | 1 | 0 | 0  | 0 | 0   |
| prev = s | 0 | 0 | 0 | 0 | 1 | 0  | 0 | 0   |
| prev = z | 0 | 0 | 0 | 0 | 0 | 1  | 0 | 0   |
| ur       | 0 | 0 | 1 | 1 | 1 | 1  | 1 | 1   |

collect  
bigram  
statistics

Training Set  
Acc

Out-of-Domain Test  
Acc

## Unique Copy



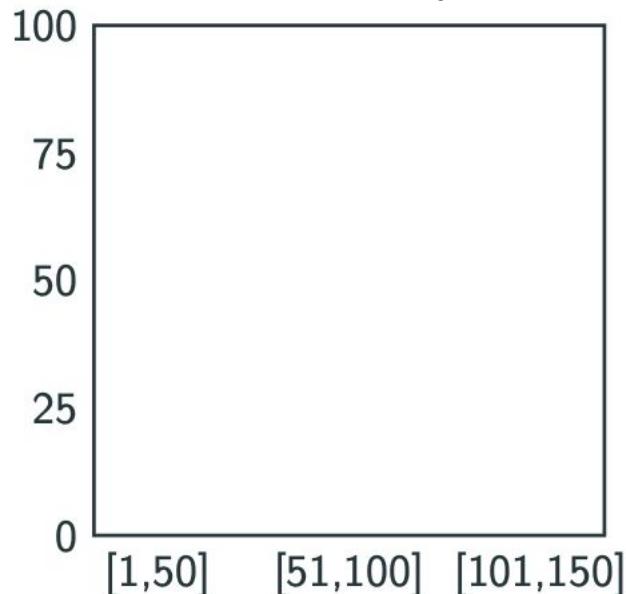
|          | % | u | r | s | z | \$ | u | ... |
|----------|---|---|---|---|---|----|---|-----|
| prev = u | 0 | 0 | 1 | 0 | 0 | 0  | 0 | 0   |
| prev = r | 0 | 0 | 0 | 1 | 0 | 0  | 0 | 0   |
| prev = s | 0 | 0 | 0 | 0 | 1 | 0  | 0 | 0   |
| prev = z | 0 | 0 | 0 | 0 | 0 | 1  | 0 | 0   |
| ur       | 0 | 0 | 1 | 1 | 1 | 1  | 1 | 1   |
| rs       | 0 | 0 | 0 | 1 | 1 | 1  | 1 | 1   |

collect  
bigram  
statistics

Training Set  
Acc

Out-of-Domain Test  
Acc

## Unique Copy



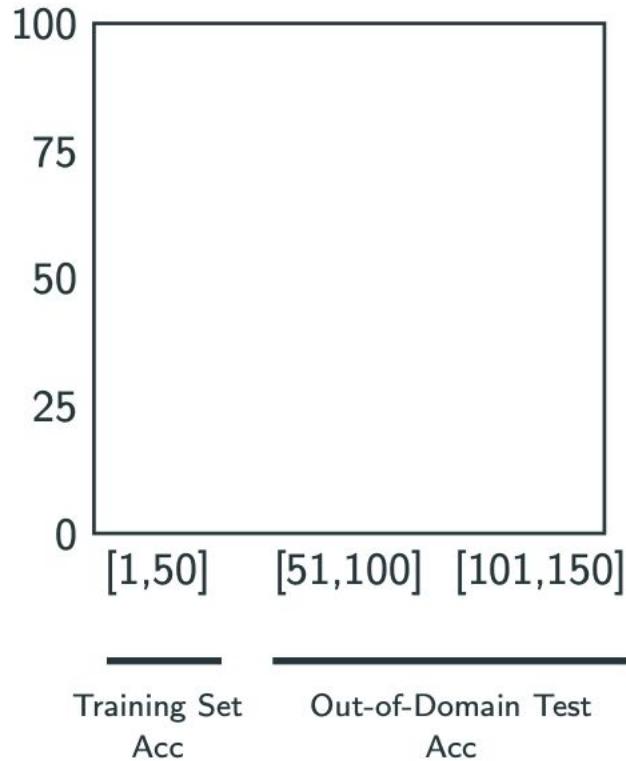
|          | % | u | r | s | z | \$ | u | ... |
|----------|---|---|---|---|---|----|---|-----|
| prev = u | 0 | 0 | 1 | 0 | 0 | 0  | 0 | 0   |
| prev = r | 0 | 0 | 0 | 1 | 0 | 0  | 0 | 0   |
| prev = s | 0 | 0 | 0 | 0 | 1 | 0  | 0 | 0   |
| prev = z | 0 | 0 | 0 | 0 | 0 | 1  | 0 | 0   |
| ur       | 0 | 0 | 1 | 1 | 1 | 1  | 1 | 1   |
| rs       | 0 | 0 | 0 | 1 | 1 | 1  | 1 | 1   |
| sz       | 0 | 0 | 0 | 0 | 1 | 1  | 1 | 1   |

collect  
bigram  
statistics

Training Set  
Acc

Out-of-Domain Test  
Acc

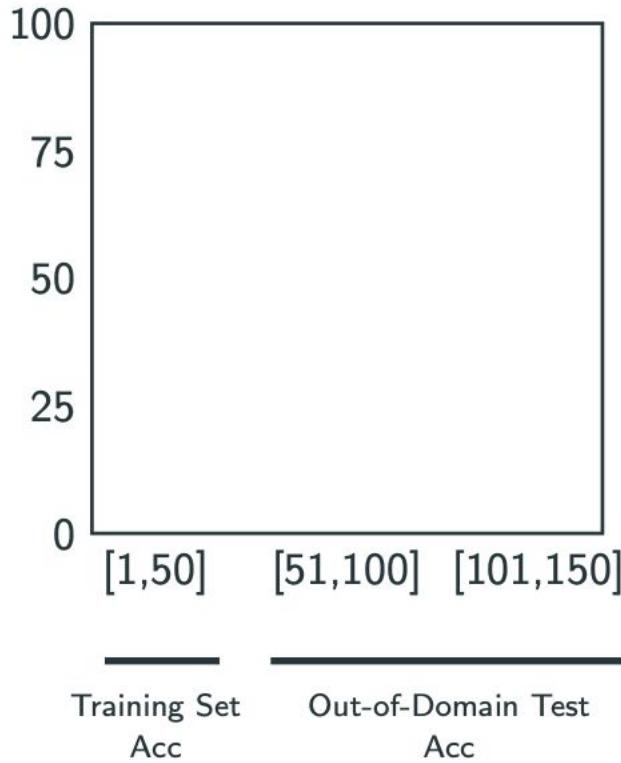
## Unique Copy



|          | % | u | r | s | z | \$ | u | ... |
|----------|---|---|---|---|---|----|---|-----|
| prev = u | 0 | 0 | 1 | 0 | 0 | 0  | 0 | 0   |
| prev = r | 0 | 0 | 0 | 1 | 0 | 0  | 0 | 0   |
| prev = s | 0 | 0 | 0 | 0 | 1 | 0  | 0 | 0   |
| prev = z | 0 | 0 | 0 | 0 | 0 | 1  | 0 | 0   |
| ur       | 0 | 0 | 1 | 1 | 1 | 1  | 1 | 1   |
| rs       | 0 | 0 | 0 | 1 | 1 | 1  | 1 | 1   |
| sz       | 0 | 0 | 0 | 0 | 1 | 1  | 1 | 1   |
| us       | 0 | 0 | 0 | 0 | 0 | 0  | 0 | 0   |

collect  
bigram  
statistics

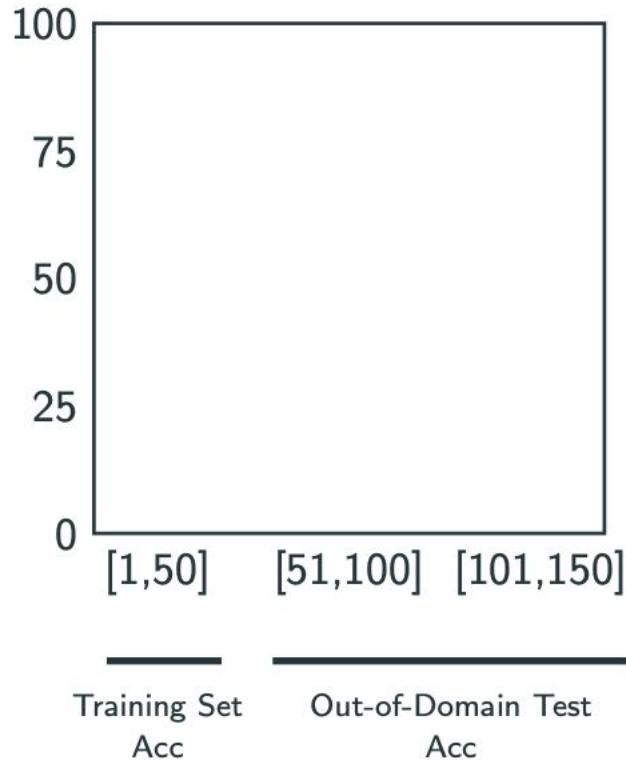
## Unique Copy



|          | %   | u   | r   | s   | z   | \$  | u   | ... |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|
| prev = u | 0   | 0   | 1   | 0   | 0   | 0   | 0   | 0   |
| prev = r | 0   | 0   | 0   | 1   | 0   | 0   | 0   | 0   |
| prev = s | 0   | 0   | 0   | 0   | 1   | 0   | 0   | 0   |
| prev = z | 0   | 0   | 0   | 0   | 0   | 1   | 0   | 0   |
| ur       | 0   | 0   | 1   | 1   | 1   | 1   | 1   | 1   |
| rs       | 0   | 0   | 0   | 1   | 1   | 1   | 1   | 1   |
| sz       | 0   | 0   | 0   | 0   | 1   | 1   | 1   | 1   |
| us       | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| ...      | ... | ... | ... | ... | ... | ... | ... | ... |

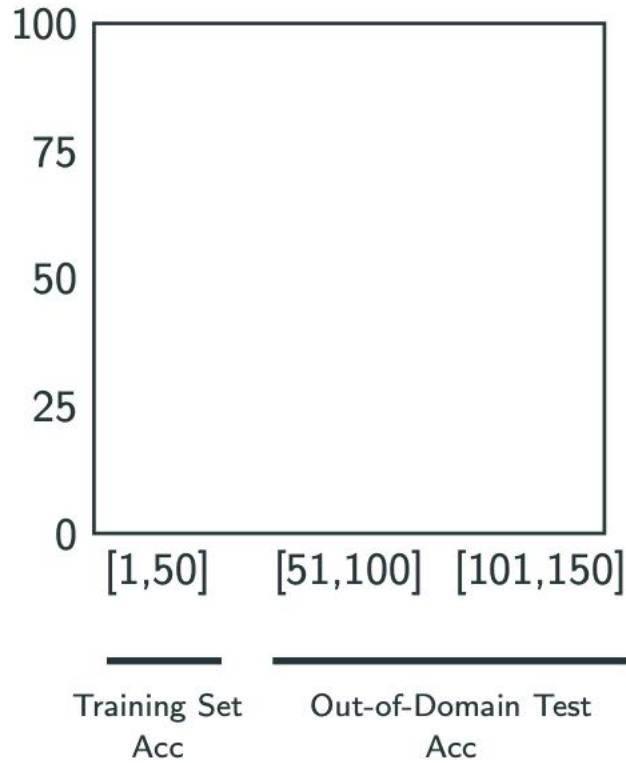
collect  
bigram  
statistics

## Unique Copy



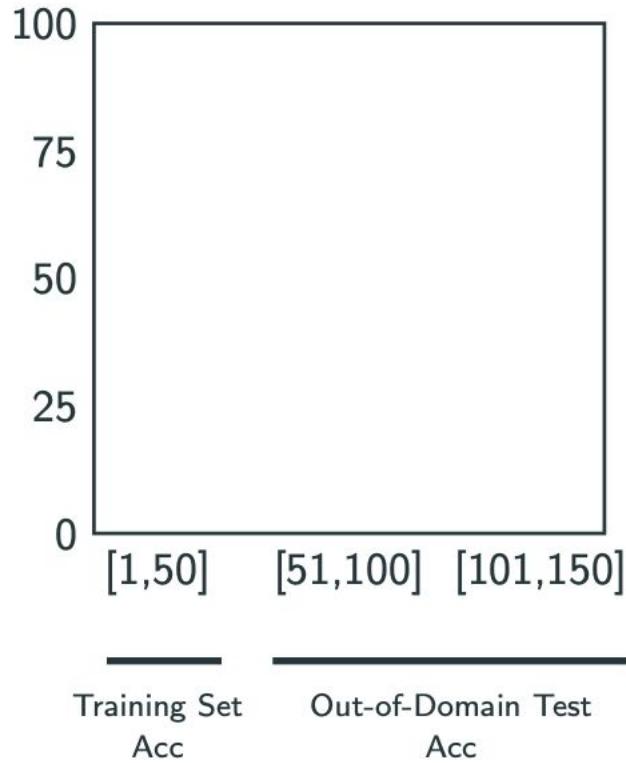
|           | %   | u   | r   | s   | z   | \$  | <b>u</b> | ... |
|-----------|-----|-----|-----|-----|-----|-----|----------|-----|
| prev = u  | 0   | 0   | 1   | 0   | 0   | 0   | 0        | 0   |
| prev = r  | 0   | 0   | 0   | 1   | 0   | 0   | 0        | 0   |
| prev = s  | 0   | 0   | 0   | 0   | 1   | 0   | 0        | 0   |
| prev = z  | 0   | 0   | 0   | 0   | 0   | 1   | 0        | 0   |
| <b>ur</b> | 0   | 0   | 1   | 1   | 1   | 1   | 1        | 1   |
| <b>rs</b> | 0   | 0   | 0   | 1   | 1   | 1   | 1        | 1   |
| <b>sz</b> | 0   | 0   | 0   | 0   | 1   | 1   | 1        | 1   |
| <b>us</b> | 0   | 0   | 0   | 0   | 0   | 0   | 0        | 0   |
| ...       | ... | ... | ... | ... | ... | ... | ...      | ... |

## Unique Copy



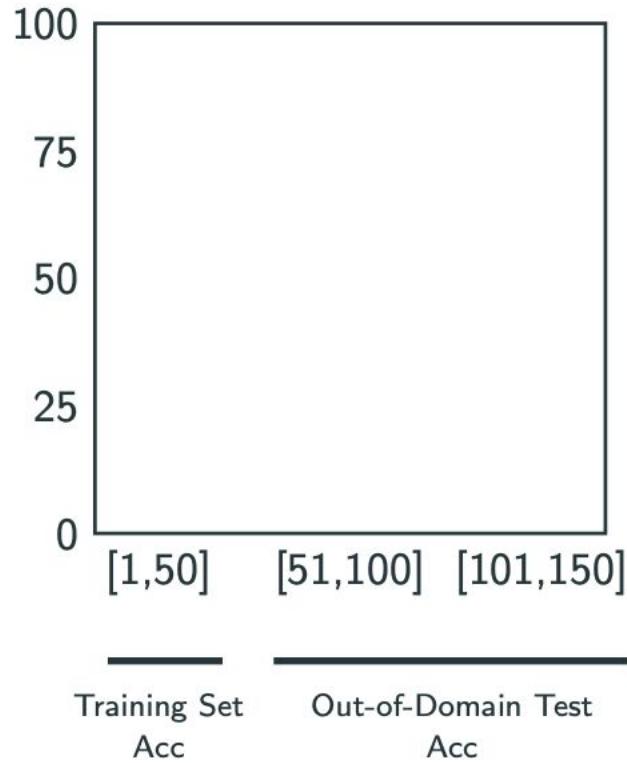
|           | %   | u | r | s | z | \$ | <b>u</b> | ... |
|-----------|-----|---|---|---|---|----|----------|-----|
| prev = u  | 0   | 0 | 1 | 0 | 0 | 0  | 0        | 0   |
| prev = r  | 0   | 0 | 0 | 1 | 0 | 0  | 0        | 0   |
| prev = s  | 0   | 0 | 0 | 0 | 1 | 0  | 0        | 0   |
| prev = z  | 0   | 0 | 0 | 0 | 0 | 1  | 0        | 0   |
| <b>ur</b> | 0   | 0 | 1 | 1 | 1 | 1  | <b>1</b> |     |
| <b>rs</b> | 0   | 0 | 0 | 1 | 1 | 1  | 1        |     |
| <b>sz</b> | 0   | 0 | 0 | 0 | 1 | 1  | 1        |     |
| <b>us</b> | 0   | 0 | 0 | 0 | 0 | 0  | 0        | 0   |
| ...       | ... |   |   |   |   |    | ...      |     |

## Unique Copy



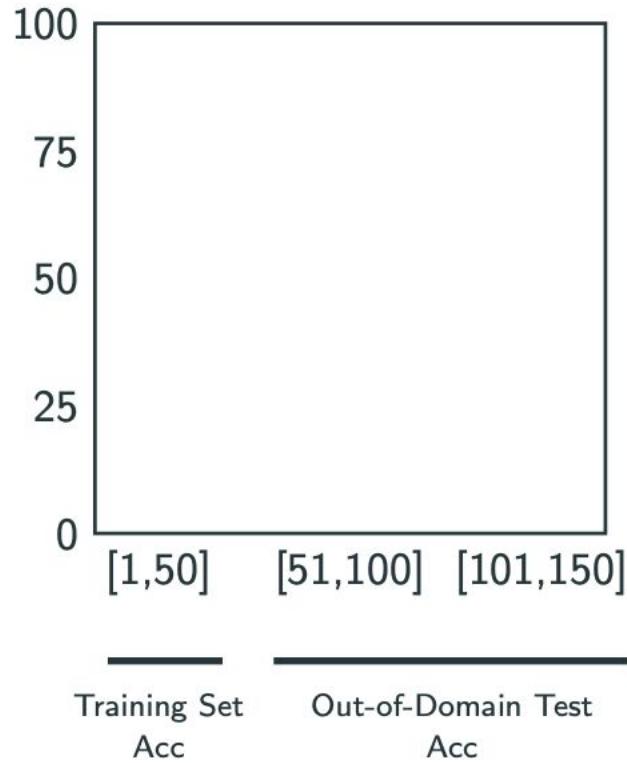
|           | %   | u | r | s | z | \$ | <b>u</b> | <b>r</b> |
|-----------|-----|---|---|---|---|----|----------|----------|
| prev = u  | 0   | 0 | 1 | 0 | 0 | 0  | 0        | 0        |
| prev = r  | 0   | 0 | 0 | 1 | 0 | 0  | 0        | 0        |
| prev = s  | 0   | 0 | 0 | 0 | 1 | 0  | 0        | 0        |
| prev = z  | 0   | 0 | 0 | 0 | 0 | 1  | 0        | 0        |
| <b>ur</b> | 0   | 0 | 1 | 1 | 1 | 1  | <b>1</b> |          |
| <b>rs</b> | 0   | 0 | 0 | 1 | 1 | 1  | 1        |          |
| <b>sz</b> | 0   | 0 | 0 | 0 | 1 | 1  | 1        |          |
| <b>us</b> | 0   | 0 | 0 | 0 | 0 | 0  | 0        | 0        |
| ...       | ... |   |   |   |   |    |          |          |

## Unique Copy



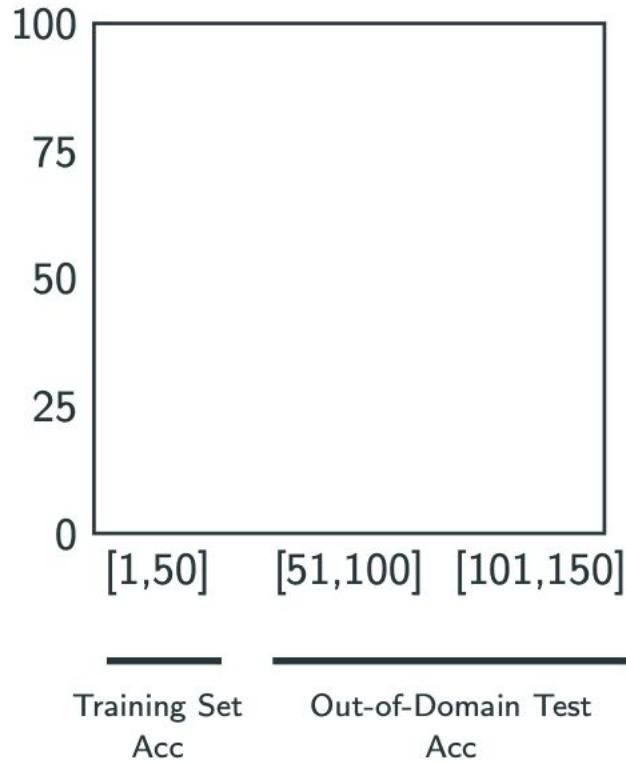
|          | %   | u | r | s | z | \$ | u | r |
|----------|-----|---|---|---|---|----|---|---|
| prev = u | 0   | 0 | 1 | 0 | 0 | 0  | 0 | 1 |
| prev = r | 0   | 0 | 0 | 1 | 0 | 0  | 0 | 0 |
| prev = s | 0   | 0 | 0 | 0 | 1 | 0  | 0 | 0 |
| prev = z | 0   | 0 | 0 | 0 | 0 | 1  | 0 | 0 |
| ur       | 0   | 0 | 1 | 1 | 1 | 1  | 1 | 1 |
| rs       | 0   | 0 | 0 | 1 | 1 | 1  | 1 | 1 |
| sz       | 0   | 0 | 0 | 0 | 1 | 1  | 1 | 1 |
| us       | 0   | 0 | 0 | 0 | 0 | 0  | 0 | 0 |
| ...      | ... |   |   |   |   |    |   |   |

## Unique Copy



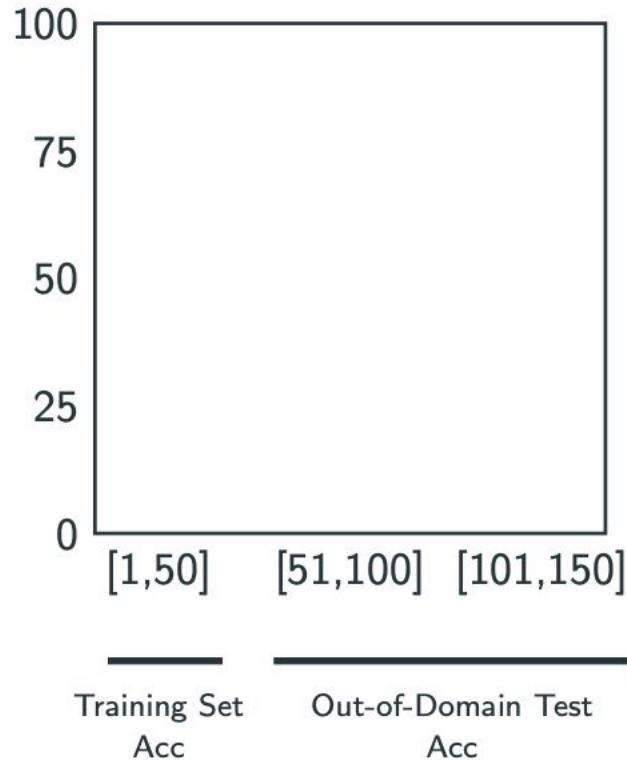
|           | %   | u   | r   | s   | z   | \$  | u   | r        |
|-----------|-----|-----|-----|-----|-----|-----|-----|----------|
| prev = u  | 0   | 0   | 1   | 0   | 0   | 0   | 0   | 1        |
| prev = r  | 0   | 0   | 0   | 1   | 0   | 0   | 0   | 0        |
| prev = s  | 0   | 0   | 0   | 0   | 1   | 0   | 0   | 0        |
| prev = z  | 0   | 0   | 0   | 0   | 0   | 1   | 0   | 0        |
| ur        | 0   | 0   | 1   | 1   | 1   | 1   | 1   | 1        |
| <b>rs</b> | 0   | 0   | 0   | 1   | 1   | 1   | 1   | <b>1</b> |
| sz        | 0   | 0   | 0   | 0   | 1   | 1   | 1   | 1        |
| us        | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0        |
| ...       | ... | ... | ... | ... | ... | ... | ... | ...      |

## Unique Copy



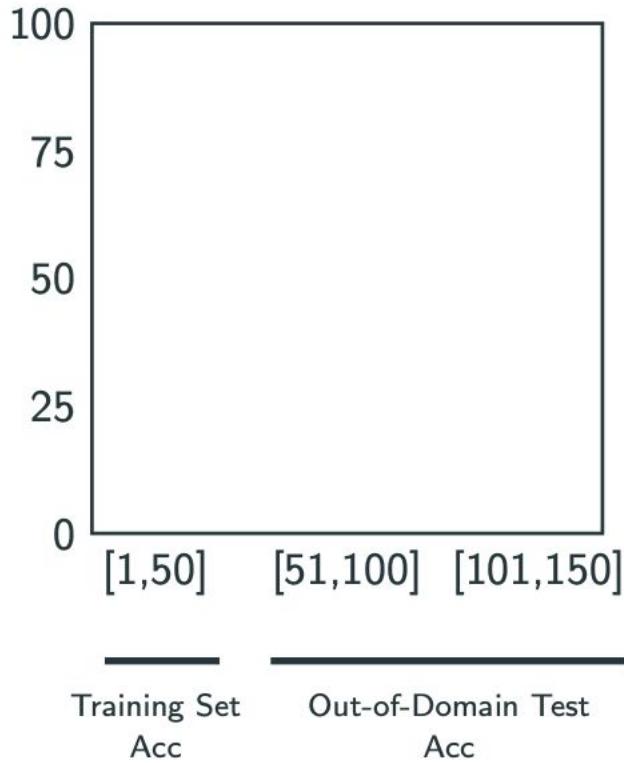
|           | %   | u | r | s | z | \$ | u | <b>r</b> | <b>s</b> |
|-----------|-----|---|---|---|---|----|---|----------|----------|
| prev = u  | 0   | 0 | 1 | 0 | 0 | 0  | 0 | 0        | 1        |
| prev = r  | 0   | 0 | 0 | 1 | 0 | 0  | 0 | 0        | 0        |
| prev = s  | 0   | 0 | 0 | 0 | 1 | 0  | 0 | 0        | 0        |
| prev = z  | 0   | 0 | 0 | 0 | 0 | 1  | 0 | 0        | 0        |
| ur        | 0   | 0 | 1 | 1 | 1 | 1  | 1 | 1        | 1        |
| <b>rs</b> | 0   | 0 | 0 | 1 | 1 | 1  | 1 | <b>1</b> |          |
| sz        | 0   | 0 | 0 | 0 | 1 | 1  | 1 | 1        | 1        |
| us        | 0   | 0 | 0 | 0 | 0 | 0  | 0 | 0        | 0        |
| ...       | ... |   |   |   |   |    |   |          |          |

## Unique Copy



|          | %   | u   | r   | s   | z   | \$  | u   | r   | s   | z   | \$  |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| prev = u | 0   | 0   | 1   | 0   | 0   | 0   | 0   | 1   | 0   | 0   | 0   |
| prev = r | 0   | 0   | 0   | 1   | 0   | 0   | 0   | 0   | 1   | 0   | 0   |
| prev = s | 0   | 0   | 0   | 0   | 1   | 0   | 0   | 0   | 0   | 1   | 0   |
| prev = z | 0   | 0   | 0   | 0   | 0   | 1   | 0   | 0   | 0   | 0   | 1   |
| ur       | 0   | 0   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   |
| rs       | 0   | 0   | 0   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   |
| sz       | 0   | 0   | 0   | 0   | 1   | 1   | 1   | 1   | 1   | 1   | 1   |
| us       | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| ...      | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |

## Unique Copy



° u r s z \$ u r s z @

### Unique Copy (Induction Head)

:

$$CP_a(i) := \# [j \leq i, j = i - 1] Q_a(j)$$

$$PRED_a(i) := CP_a(i) \geq 1$$

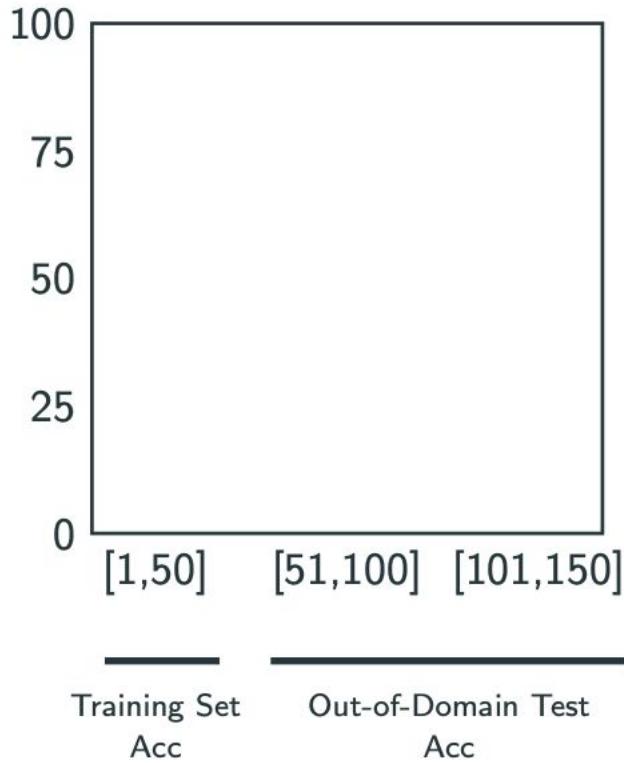
*check preceding token*

(1)

(2)

(3)

## Unique Copy



° u r s z \$ u r s z @

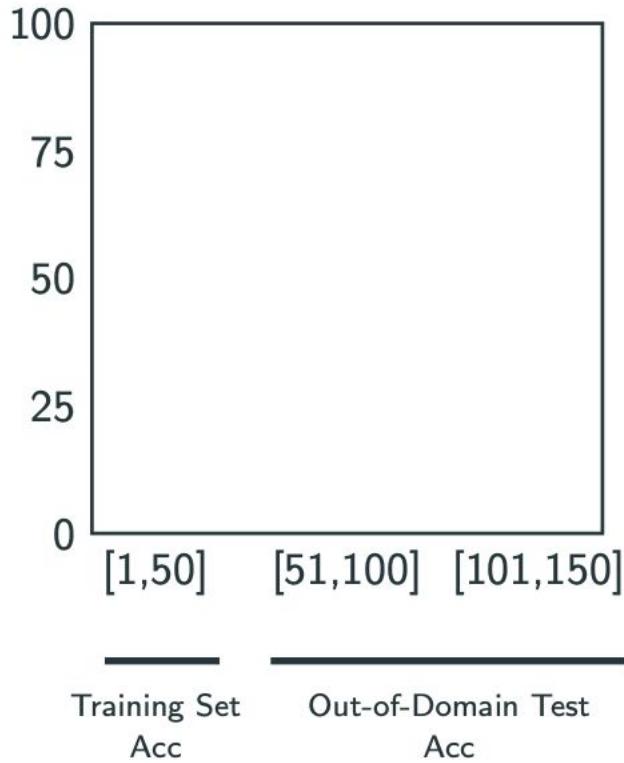
### Unique Copy (Induction Head)

⋮ (1)  
 $CP_a(i) := \# [j \leq i, j = i - 1] Q_a(j)$  (2)  
 $PRED_a(i) := CP_a(i) \geq 1$  (3)

⋮ (4)  
 $CBIGRAM_{ab} := \# [j \leq i] Q_b(j) \wedge PRED_a(j)$  (5)  
 $EXISTS_{ab} := CBIGRAM_{ab}(i) \geq 1$  (6)

*collect all  
bigram  
statistics*

## Unique Copy



o u r s z \$ u r s z @

### Unique Copy (Induction Head)

$$\vdots \quad (1)$$

$$CP_a(i) := \# [j \leq i, j = i - 1] Q_a(j) \quad (2)$$

$$PRED_a(i) := CP_a(i) \geq 1 \quad (3)$$

$$\vdots \quad (4)$$

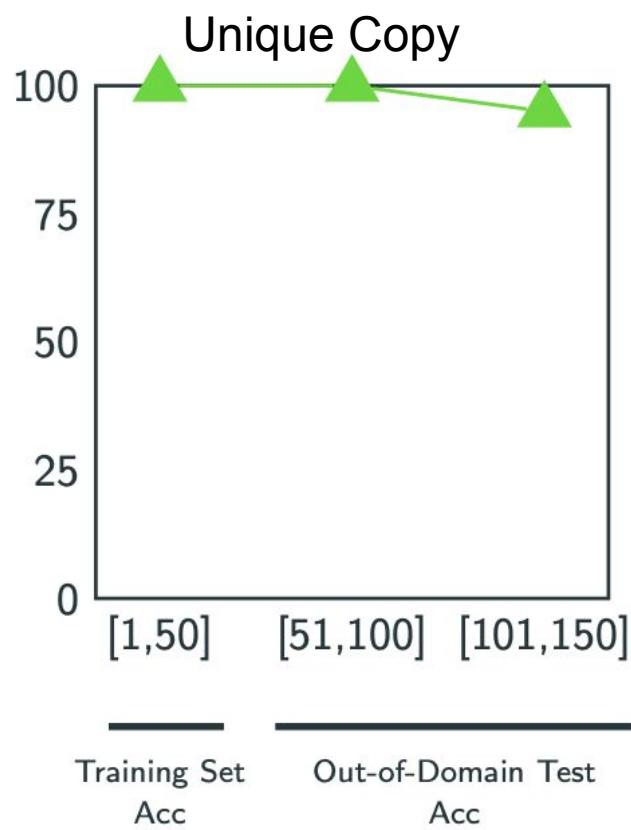
$$CBIGRAM_{ab} := \# [j \leq i] Q_b(j) \wedge PRED_a(j) \quad (5)$$

$$EXISTS_{ab} := CBIGRAM_{ab}(i) \geq 1 \quad (6)$$

$$\vdots \quad (7)$$

$$NEXT_a(i) := \bigvee_{\sigma \in \Sigma} [Q_\sigma(i) \wedge EXISTS_{\sigma a}(i)] \quad (8)$$

*use bigram  
statistics to  
output next token*



|          | %   | u | r | s | z | \$ | u | r | s | z | \$ |
|----------|-----|---|---|---|---|----|---|---|---|---|----|
| prev = u | 0   | 0 | 1 | 0 | 0 | 0  | 0 | 1 | 0 | 0 | 0  |
| prev = r | 0   | 0 | 0 | 1 | 0 | 0  | 0 | 0 | 1 | 0 | 0  |
| prev = s | 0   | 0 | 0 | 0 | 1 | 0  | 0 | 0 | 0 | 1 | 0  |
| prev = z | 0   | 0 | 0 | 0 | 0 | 1  | 0 | 0 | 0 | 0 | 1  |
| ur       | 0   | 0 | 1 | 1 | 1 | 1  | 1 | 1 | 1 | 1 | 1  |
| rs       | 0   | 0 | 0 | 1 | 1 | 1  | 1 | 1 | 1 | 1 | 1  |
| sz       | 0   | 0 | 0 | 0 | 1 | 1  | 1 | 1 | 1 | 1 | 1  |
| us       | 0   | 0 | 0 | 0 | 0 | 0  | 0 | 0 | 0 | 0 | 0  |
| ...      | ... |   |   |   |   |    |   |   |   |   |    |

# C-RASP[*periodic, local*]

---

## *Boolean-Valued Operations*

---

## *Count-Valued Operations*

# C-RASP[*periodic, local*]

---

## ***Boolean-Valued Operations***

---

**Initial**

$P(i) := Q_\sigma(i)$   
for  $\sigma \in \Sigma$

---

check for symbols

# C-RASP[*periodic, local*]

---

## ***Boolean-Valued Operations***

---

**Initial**  $P(i) := Q_\sigma(i)$   
*for*  $\sigma \in \Sigma$

---

**Boolean**  $P(i) := \neg P_1(i)$   
 $P(i) := P_1(i) \wedge P_2(i)$  propositional logic

---

**Constant**  $P(i) := \top$

---

# C-RASP[*periodic, local*]

## ***Boolean-Valued Operations***

|                   |                                                         |
|-------------------|---------------------------------------------------------|
| <b>Initial</b>    | $P(i) := Q_\sigma(i)$<br><i>for</i> $\sigma \in \Sigma$ |
| <b>Boolean</b>    | $P(i) := \neg P_1(i)$<br>$P(i) := P_1(i) \wedge P_2(i)$ |
| <b>Constant</b>   | $P(i) := \top$                                          |
| <b>Positional</b> | $P(i) := \phi(i)$<br><i>for</i> $\phi \in \Phi$         |

checking position

# C-RASP[*periodic, local*]

## ***Boolean-Valued Operations***

|                   |                                                         |
|-------------------|---------------------------------------------------------|
| <b>Initial</b>    | $P(i) := Q_\sigma(i)$<br><i>for</i> $\sigma \in \Sigma$ |
| <b>Boolean</b>    | $P(i) := \neg P_1(i)$<br>$P(i) := P_1(i) \wedge P_2(i)$ |
| <b>Constant</b>   | $P(i) := \top$                                          |
| <b>Positional</b> | $P(i) := \phi(i)$<br><i>for</i> $\phi \in \Phi$         |
| <b>Comparison</b> | $P(i) := C_1(i) \leq C_2(i)$                            |

compare  
counts

# C-RASP[*periodic, local*]

count how many preceding  
positions  $j$  satisfy a property

## *Count-Valued Operations*

### *Counting*

$$C(i) := \# [j \leq i, \psi(i, j)] \quad P(j)$$

for  $\psi \in \Psi \cup \{\top\}$

# C-RASP[*periodic, local*]

count arithmetic

## *Count-Valued Operations*

---

**Counting**  $C(i) := \# [j \leq i, \psi(i, j)] \ P(j)$   
for  $\psi \in \Psi \cup \{\top\}$

---

**Conditional**  $C(i) := P(i) ? C_1(i) : C_2(i)$

---

**Addition**  $C(i) := C_1(i) + C_2(i)$

---

**Subtraction**  $C(i) := C_1(i) - C_2(i)$

---

**Constant**  $C(i) := 1$

---

# C-RASP[*periodic, local*]

| <b>Boolean-Valued Operations</b> |                                                         |
|----------------------------------|---------------------------------------------------------|
| <b>Initial</b>                   | $P(i) := Q_\sigma(i)$<br>for $\sigma \in \Sigma$        |
| <b>Boolean</b>                   | $P(i) := \neg P_1(i)$<br>$P(i) := P_1(i) \wedge P_2(i)$ |
| <b>Constant</b>                  | $P(i) := \top$                                          |
| <b>Positional</b>                | $P(i) := \phi(i)$<br>for $\phi \in \Phi$                |
| <b>Comparison</b>                | $P(i) := C_1(i) \leq C_2(i)$                            |

| <b>Count-Valued Operations</b> |                                                                               |
|--------------------------------|-------------------------------------------------------------------------------|
| <b>Counting</b>                | $C(i) := \# [j \leq i, \psi(i, j)] P(j)$<br>for $\psi \in \Psi \cup \{\top\}$ |
| <b>Conditional</b>             | $C(i) := P(i) ? C_1(i) : C_2(i)$                                              |
| <b>Addition</b>                | $C(i) := C_1(i) + C_2(i)$                                                     |
| <b>Subtraction</b>             | $C(i) := C_1(i) - C_2(i)$                                                     |
| <b>Constant</b>                | $C(i) := 1$                                                                   |

# C-RASP[*periodic, local*]

## *Boolean-Valued Operations*

**Initial**  $P(i) := Q_\sigma(i)$   
for  $\sigma \in \Sigma$

**Boolean**  $P(i) := \neg P_1(i)$   
 $P(i) := P_1(i) \wedge P_2(i)$

**Constant**  $P(i) := \top$

**Positional**  $P(i) := \phi(i)$   
for  $\phi \in \Phi$

**Comparison**  $P(i) := C_1(i) \leq C_2(i)$

## *Count-Valued Operations*

**Counting**  $C(i) := \# [j \leq i, \psi(i, j)] P(j)$   
for  $\psi \in \Psi \cup \{\top\}$

**Conditional**  $C(i) := P(i) ? C_1(i) : C_2(i)$

**Addition**  $C(i) := C_1(i) + C_2(i)$

**Subtraction**  $C(i) := C_1(i) - C_2(i)$

**Constant**  $C(i) := 1$

Operations from original C-RASP  
definitions by Yang&Chiang 2024 (COLM).

Newly added (or modified) positionally-aware operations. Needed to model positional encodings.

### Boolean-Valued Operations

|                   |                                                         |
|-------------------|---------------------------------------------------------|
| <b>Initial</b>    | $P(i) := Q_\sigma(i)$<br>for $\sigma \in \Sigma$        |
| <b>Boolean</b>    | $P(i) := \neg P_1(i)$<br>$P(i) := P_1(i) \wedge P_2(i)$ |
| <b>Constant</b>   | $P(i) := \top$                                          |
| <b>Positional</b> | $P(i) := \phi(i)$<br>for $\phi \in \Phi$                |
| <b>Comparison</b> | $P(i) := C_1(i) \leq C_2(i)$                            |

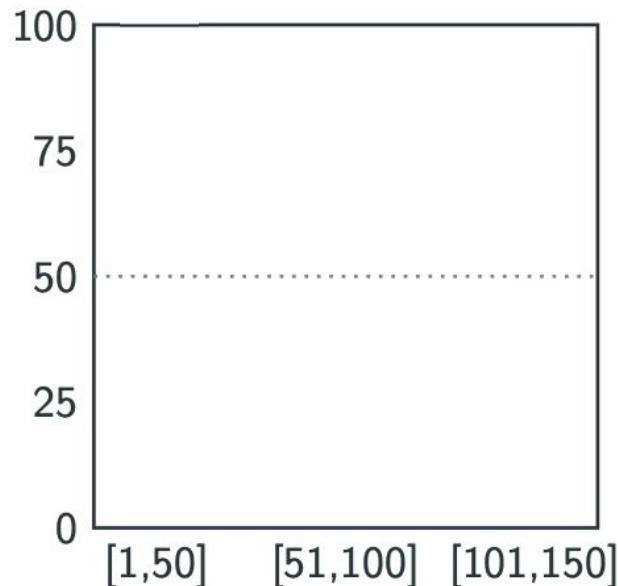
### Count-Valued Operations

|                    |                                                                               |
|--------------------|-------------------------------------------------------------------------------|
| <b>Counting</b>    | $C(i) := \# [j \leq i, \psi(i, j)] P(j)$<br>for $\psi \in \Psi \cup \{\top\}$ |
| <b>Conditional</b> | $C(i) := P(i) ? C_1(i) : C_2(i)$                                              |
| <b>Addition</b>    | $C(i) := C_1(i) + C_2(i)$                                                     |
| <b>Subtraction</b> | $C(i) := C_1(i) - C_2(i)$                                                     |
| <b>Constant</b>    | $C(i) := 1$                                                                   |

Operations from original C-RASP definitions by Yang&Chiang 2024 (COLM).

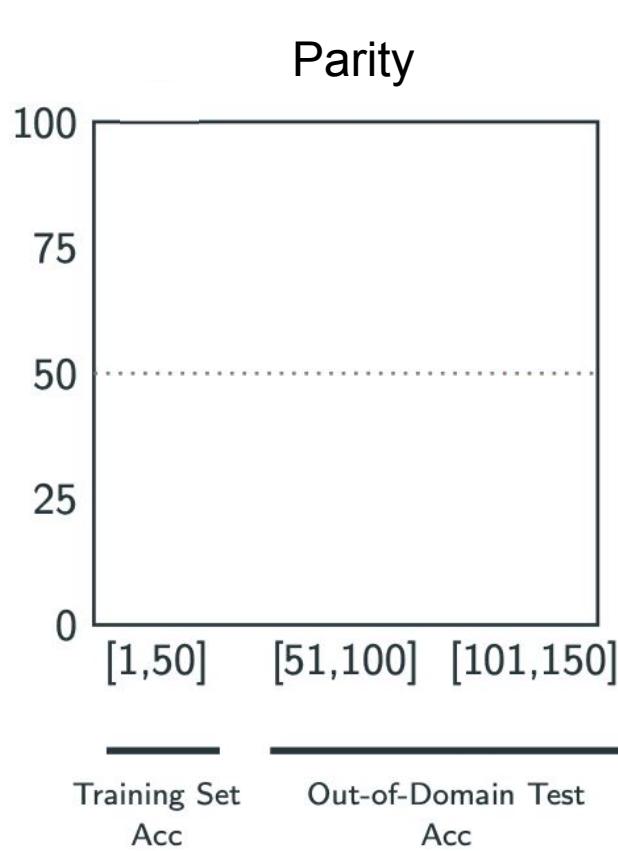
## Parity

‰ 0 1 1 0 \$ even @



Training Set  
Acc

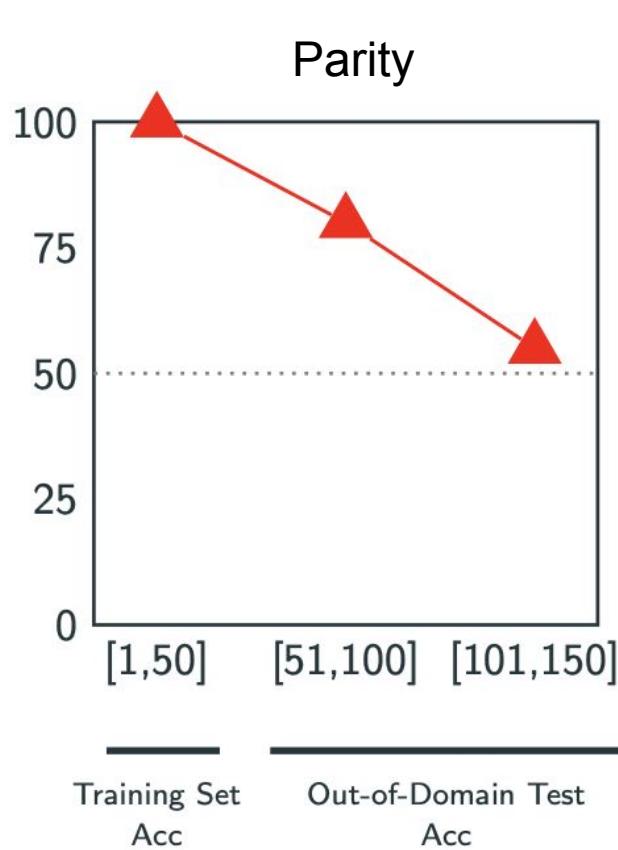
Out-of-Domain Test  
Acc



Provably no C-RASP program!

C-RASP[periodic, local] for Parity

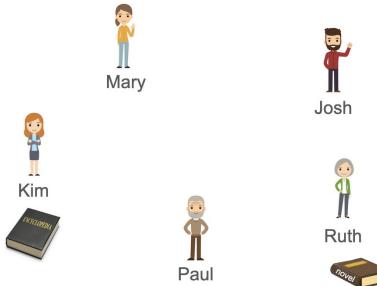
⇒ C-RASP[ $\emptyset$ ] for  $(aa)^*$



Provably no C-RASP program!

C-RASP[periodic, local] for Parity  
 $\implies$  C-RASP[ $\emptyset$ ] for  $(aa)^*$

# Same holds for more complex state tracking.



Paul had an encyclopedia.  
Mary had a novel.  
Paul gave his book to Josh.  
Mary gave her book to Paul.  
Josh gave his book to Kim.  
Paul gave his book to Ruth.  
Who has the encyclopedia?

Answer: Kim has the encyclopedia.

## People exchanging books

:

:

???

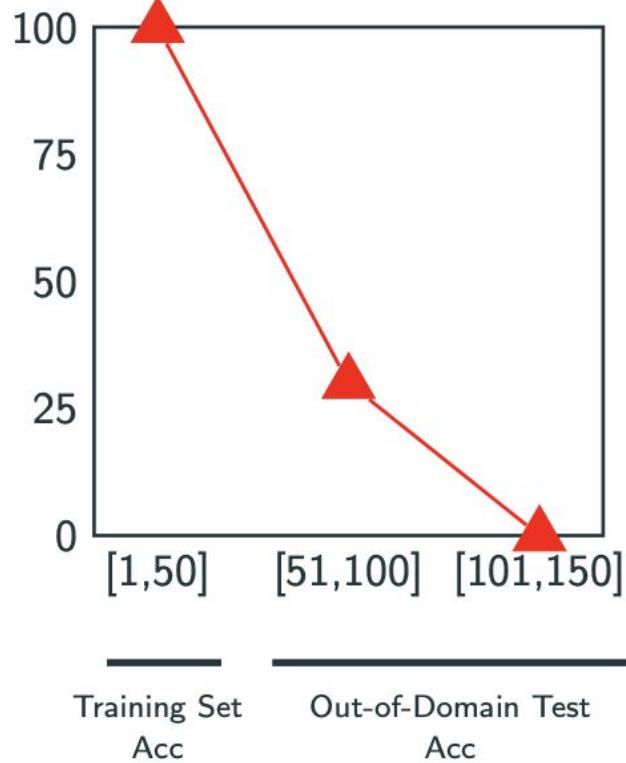
(1)

(2)

(3)

Provably no C-RASP program!

## Copy with Repetitions



% a a b a \$ a a b a @

### Copy With Repetition

:

:

???

(1)

(2)

(3)

Provably no C-RASP program!

rigorous proof via  
communication complexity

## Theorem (informal)

## Theorem (informal)

Assume  $f$  is expressible in C-RASP.

## Theorem (informal)

Assume  $f$  is expressible in C-RASP.

Choose a transformer  $T_n$

## Theorem (informal)

Assume  $f$  is expressible in C-RASP.

Choose a transformer  $T_n$

- with context window  $2n$

context window of  $T_n$

length  $2n$

## Theorem (informal)

Assume  $f$  is expressible in C-RASP.

Choose a transformer  $T_n$

- with context window  $2n$
- that exactly fits  $f$  on all inputs up to length  $n$

context window of  $T_n$

length  $2n$

length  $n$

*training  
data*

## Theorem (informal)

Assume  $f$  is expressible in C-RASP.

Choose a transformer  $T_n$

- with context window  $2n$
- that exactly fits  $f$  on all inputs up to length  $n$

subject to a certain regularizer.

context window of  $T_n$

length  $2n$

length  $n$

*training  
data*

## Theorem (informal)

Assume  $f$  is expressible in C-RASP.

Choose a transformer  $T_n$

- with context window  $2n$
- that exactly fits  $f$  on all inputs up to length  $n$

subject to a certain regularizer.

Then  $T_n$  matches  $f$  at all inputs up to length  $2n$ ,

context window of  $T_n$

length  $2n$

length  $n$

*training  
data*

length  $2n$

*test  
examples*

## Theorem (informal)

Assume  $f$  is expressible in C-RASP.

Choose a transformer  $T_n$

- with context window  $2n$
- that exactly fits  $f$  on all inputs up to length  $n$

subject to a certain regularizer.

Then  $T_n$  matches  $f$  at all inputs up to length  $2n$ .

as long as  $n > N_0(f)$ .

context window of  $T_n$

length  $2n$

length  $n$

*training  
data*

length  $2n$

*test  
examples*



## Disclaimer

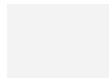
- Idealized learning: all data is available up to length  $n$ .  
Not SGD



## Disclaimer

- Idealized learning: all data is available up to length  $n$ .  
Not SGD
- Focus on APE / NoPE

## Proof Idea



$T_1$

## Proof Idea

$T_1$



## Proof Idea

$T_1$

$T_2$

length  $\leq 2$       length  $\leq 4$

training  
data



test  
examples



## Proof Idea

$T_1$

$T_2$

$T_3$

length  $\leq 3$       length  $\leq 6$

training  
data

test  
examples



## Proof Idea

$T_1$

$T_2$

$T_3$

$T_4$

length  $\leq 4$       length  $\leq 8$

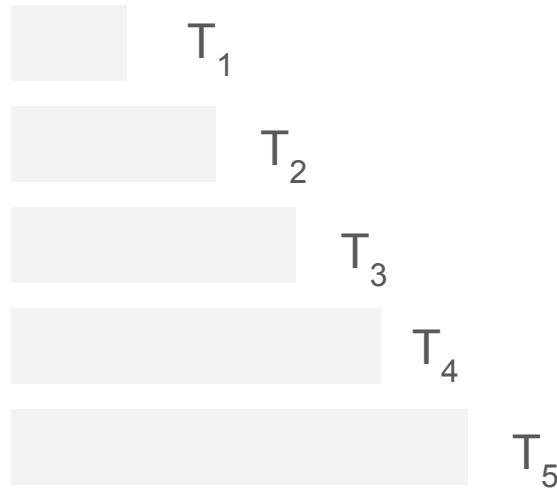
training data



test examples



## Proof Idea

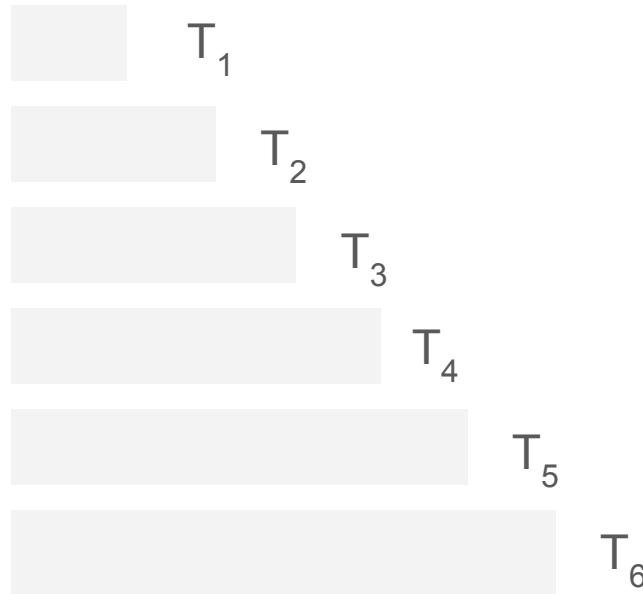


length  $\leq 5$       length  $\leq 10$

training data 

test examples 

## Proof Idea



length  $\leq 6$       length  $\leq 12$

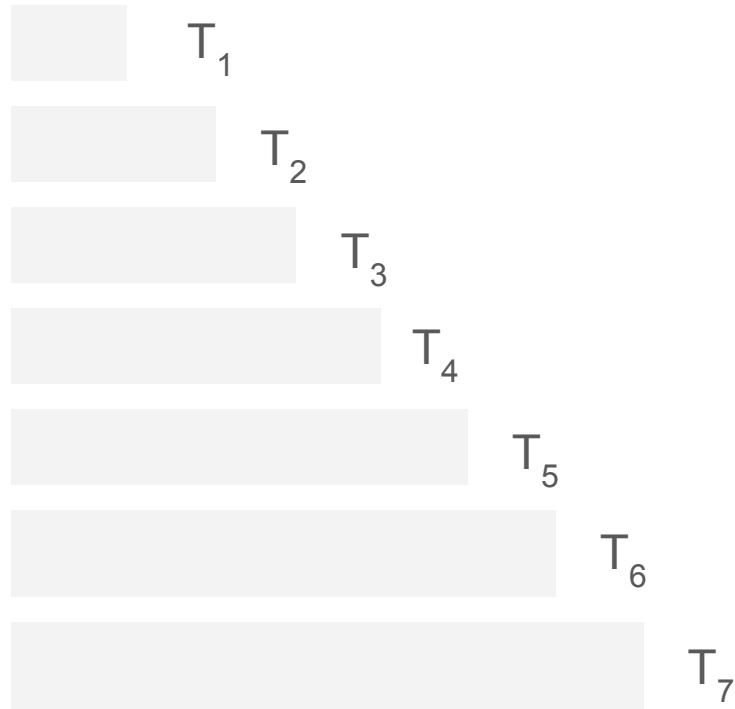
training  
data



test  
examples



## Proof Idea



length  $\leq 7$       length  $\leq 14$

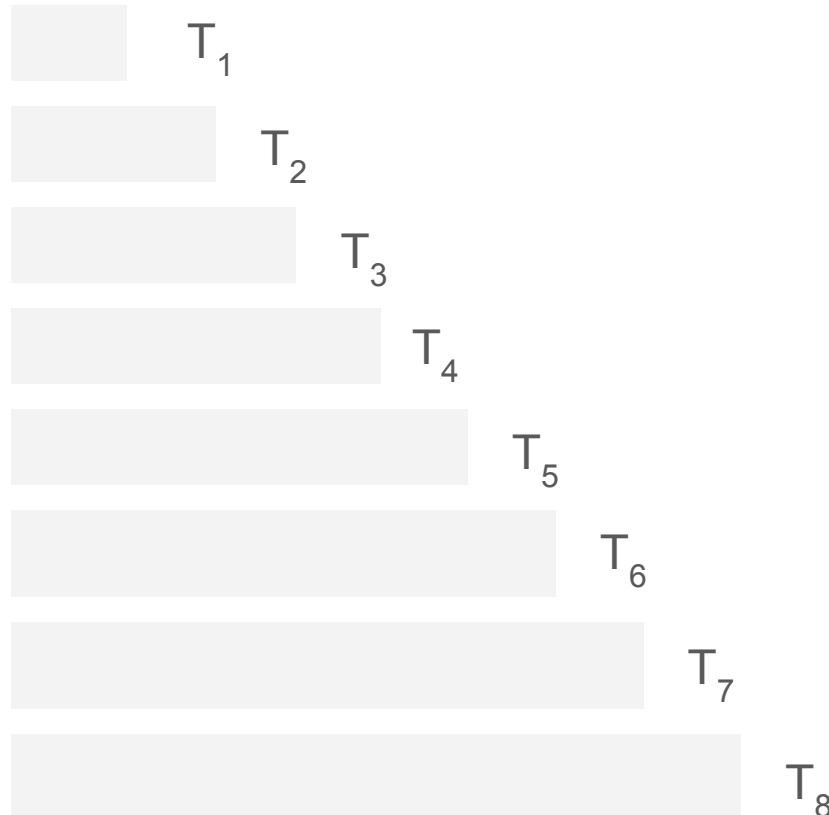
training  
data



test  
examples



## Proof Idea



length  $\leq 8$       length  $\leq 16$

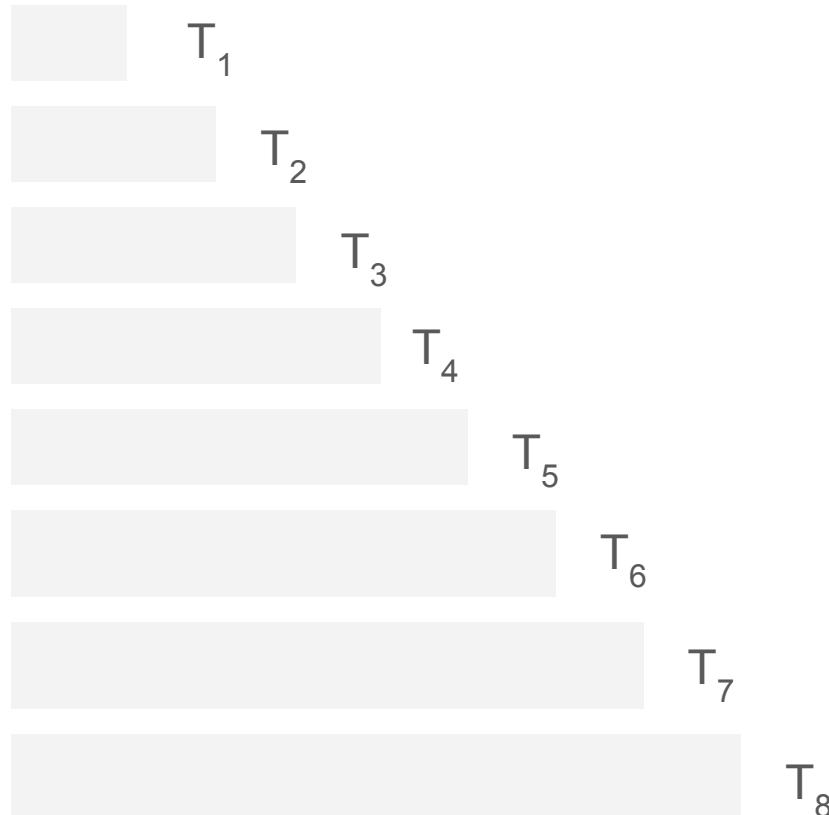
training  
data



test  
examples



## Proof Idea



Length Generalization



training  
data

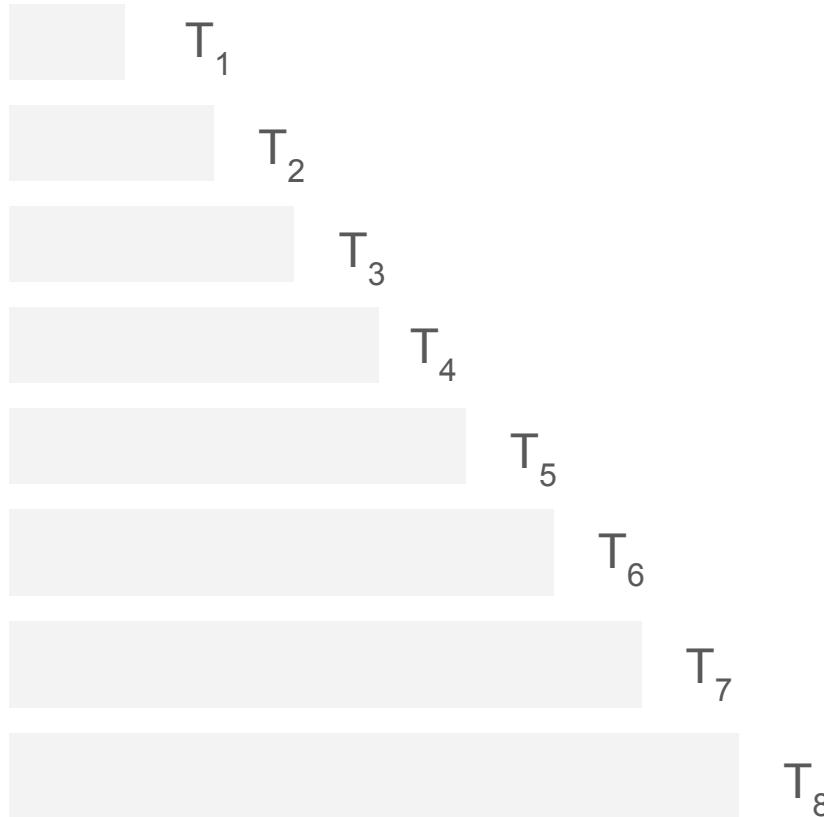


test  
examples



## Proof Idea

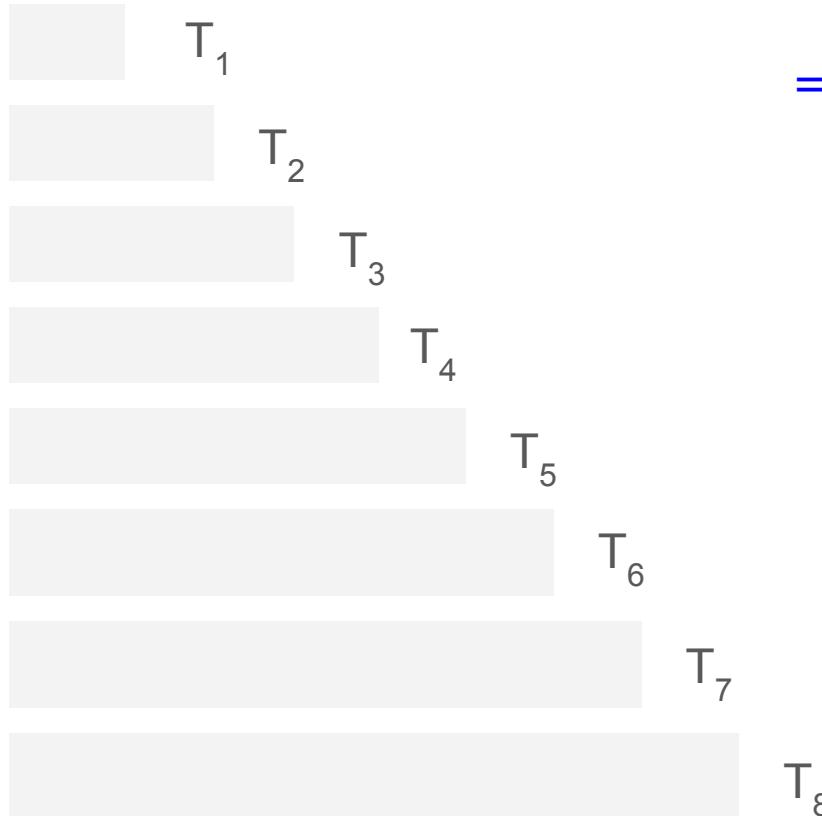
f has C-RASP program



## Proof Idea

$f$  has C-RASP program

$\Rightarrow R(T_i)$  is bounded

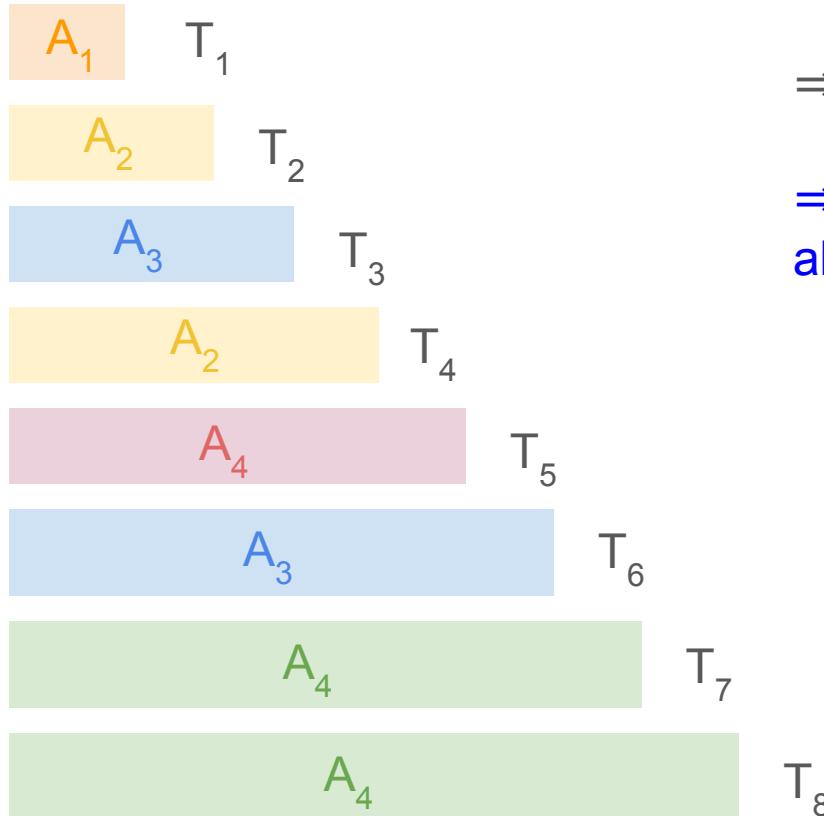


## Proof Idea

$f$  has C-RASP program

$\Rightarrow R(T_i)$  is bounded

$\Rightarrow T_i$  only traverse a finite number of distinct algorithms



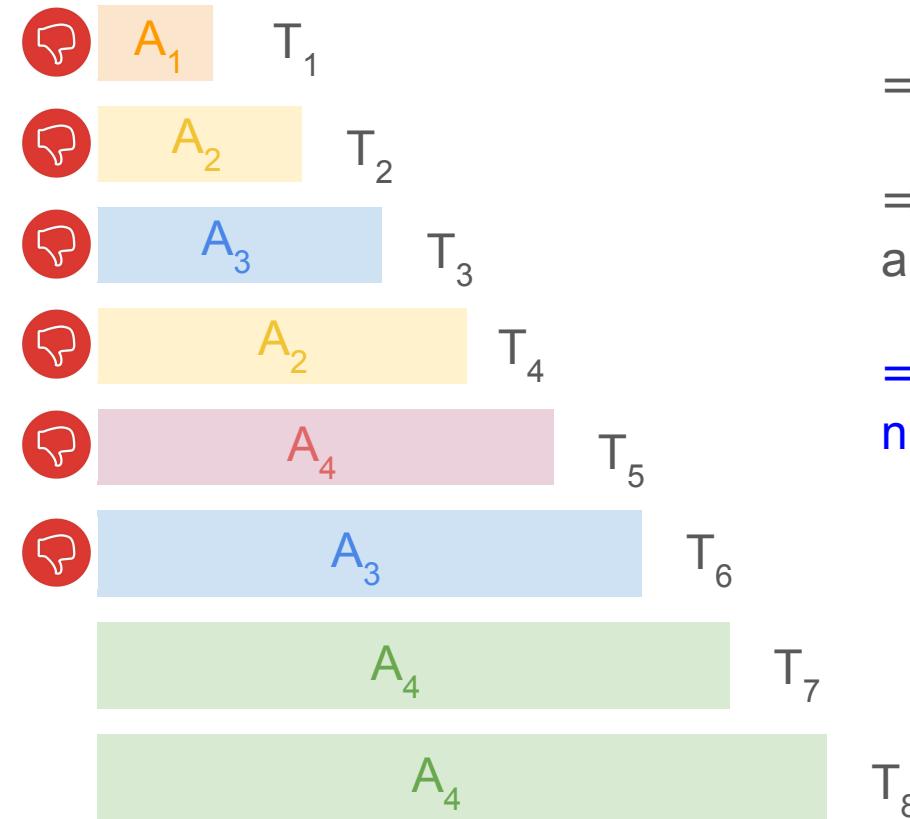
## Proof Idea

$f$  has C-RASP program

$\Rightarrow R(T_i)$  is bounded

$\Rightarrow T_i$  only traverse a finite number of distinct algorithms

$\Rightarrow$  each algorithm is either ruled out at some  $n$



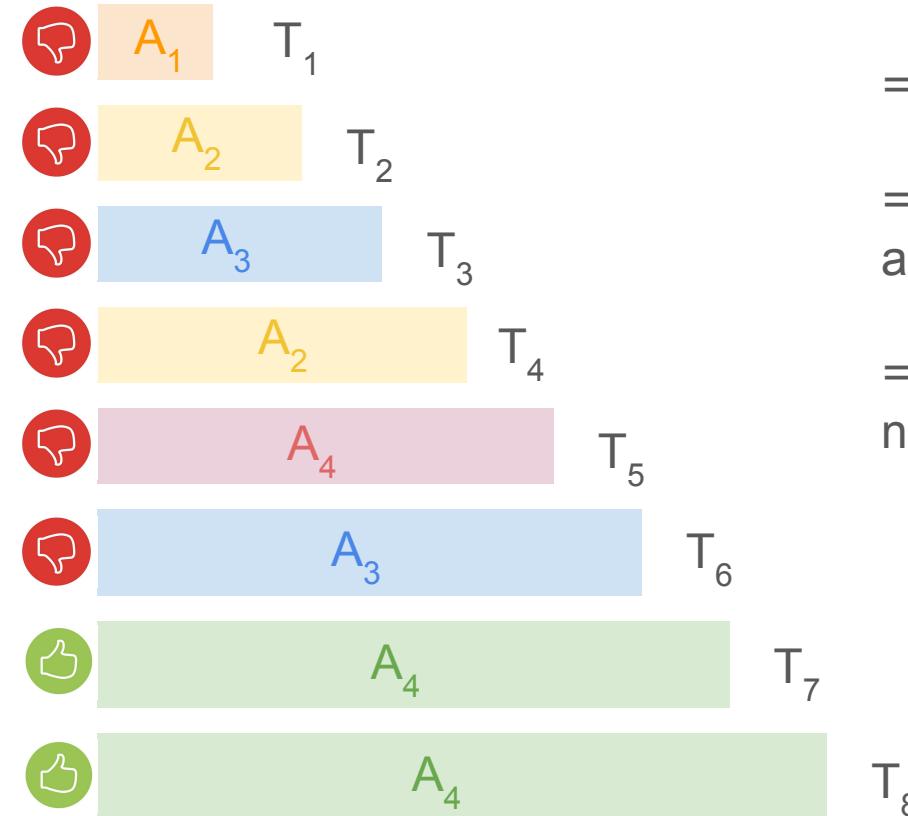
## Proof Idea

$f$  has C-RASP program

$\Rightarrow R(T_i)$  is bounded

$\Rightarrow T_i$  only traverse a finite number of distinct algorithms

$\Rightarrow$  each algorithm is either ruled out at some  $n$ , or never ruled out



## Proof Idea

$f$  has C-RASP program

$\Rightarrow R(T_i)$  is bounded

$\Rightarrow T_i$  only traverse a finite number of distinct algorithms

$\Rightarrow$  each algorithm is either ruled out at some  $n$ , or never ruled out

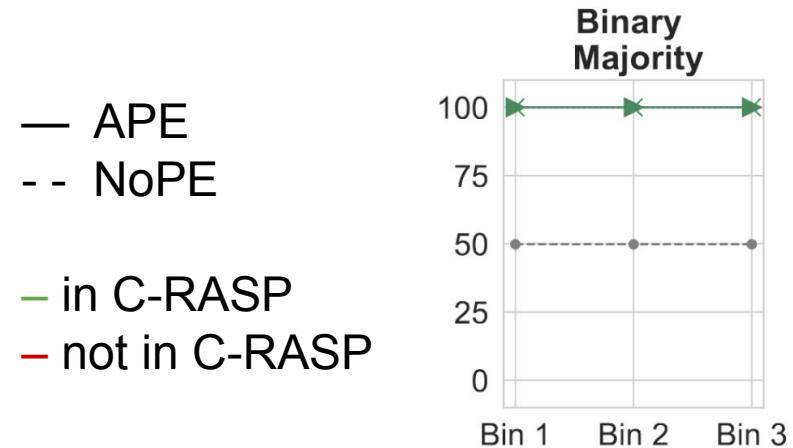
$\Rightarrow$  after some  $N_0(f)$ , each  $T_n$  matches  $f$

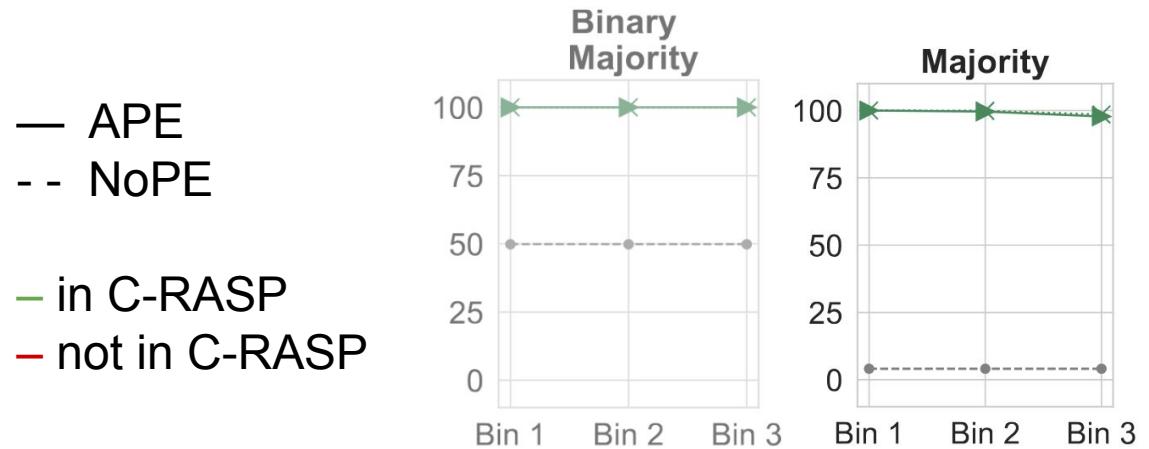
length  $n$       length  $2n$

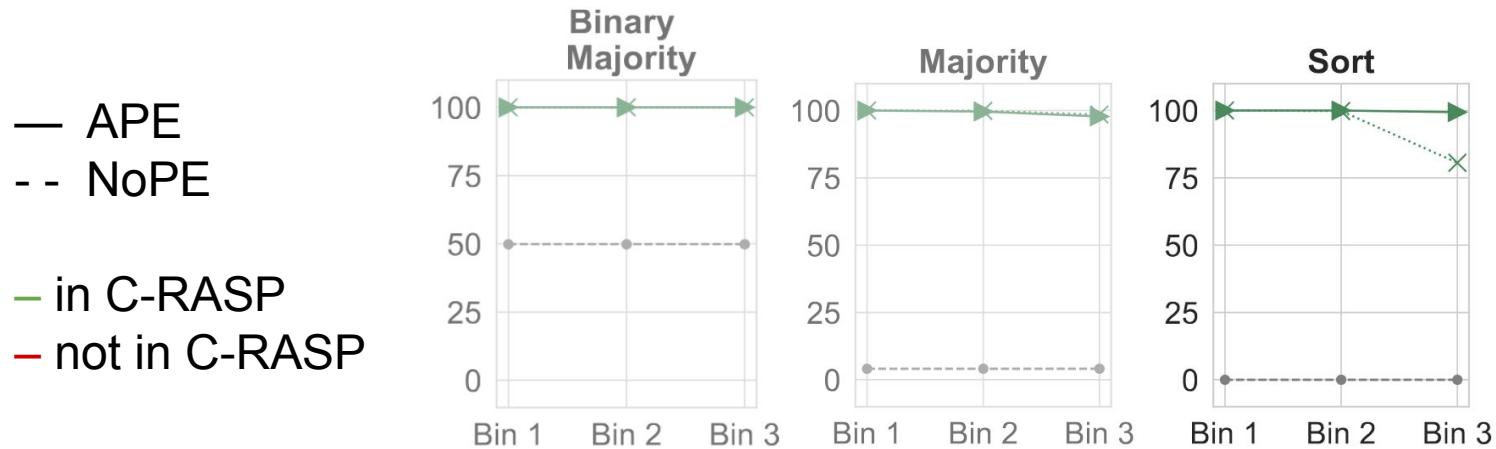
training data 

test examples 

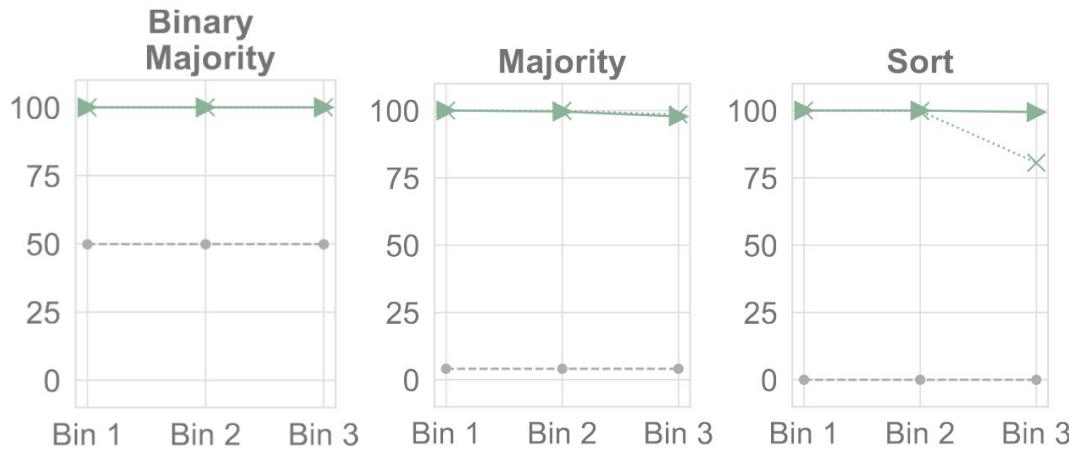
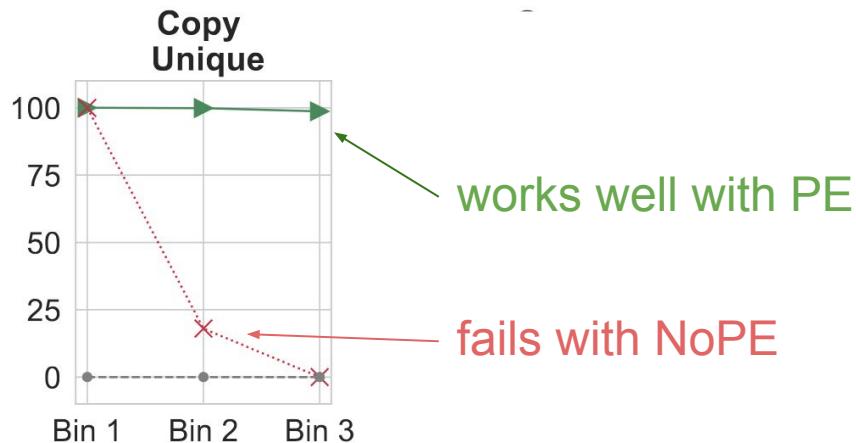




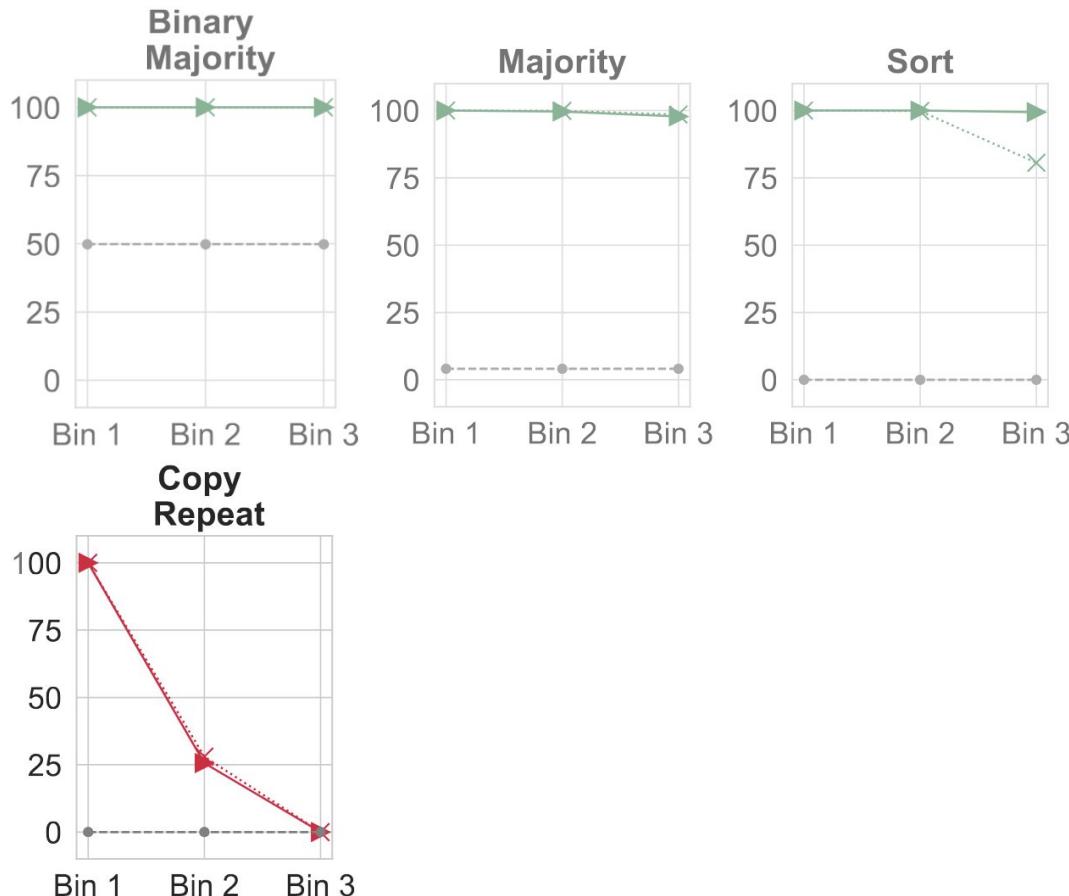




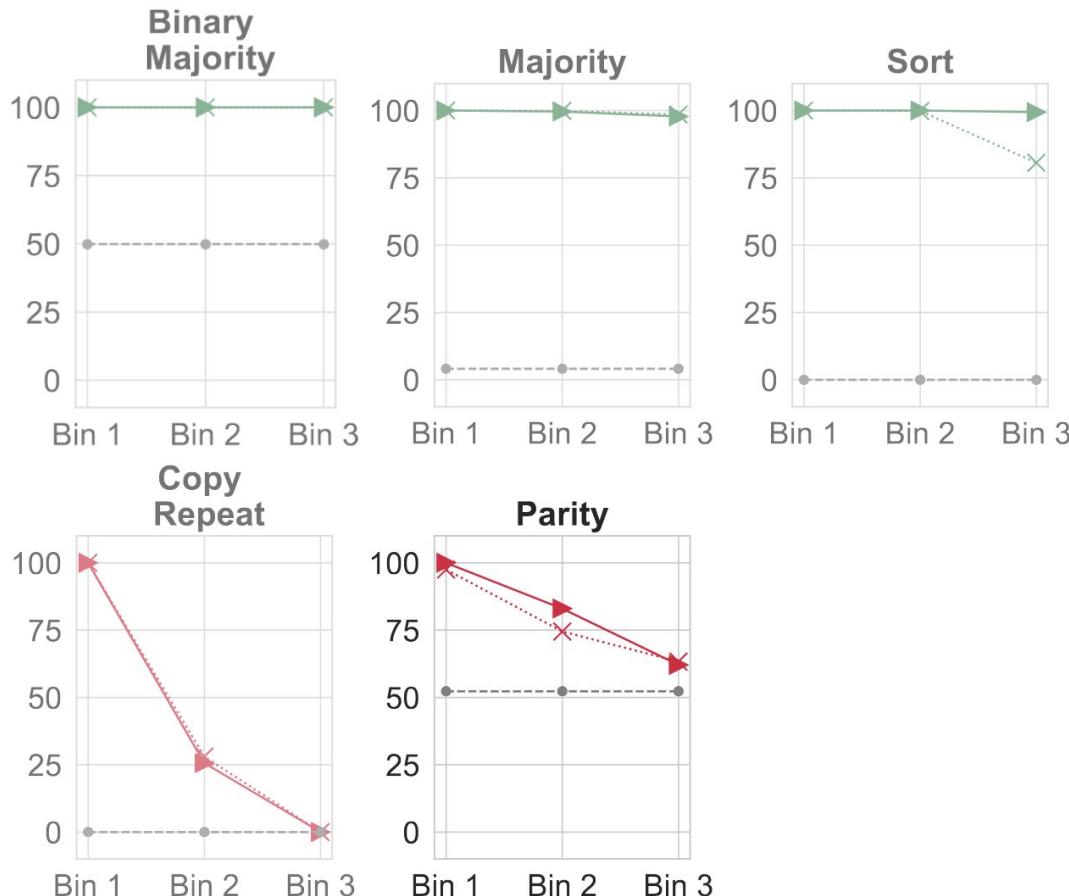
- APE
- NoPE
- in C-RASP
- not in C-RASP

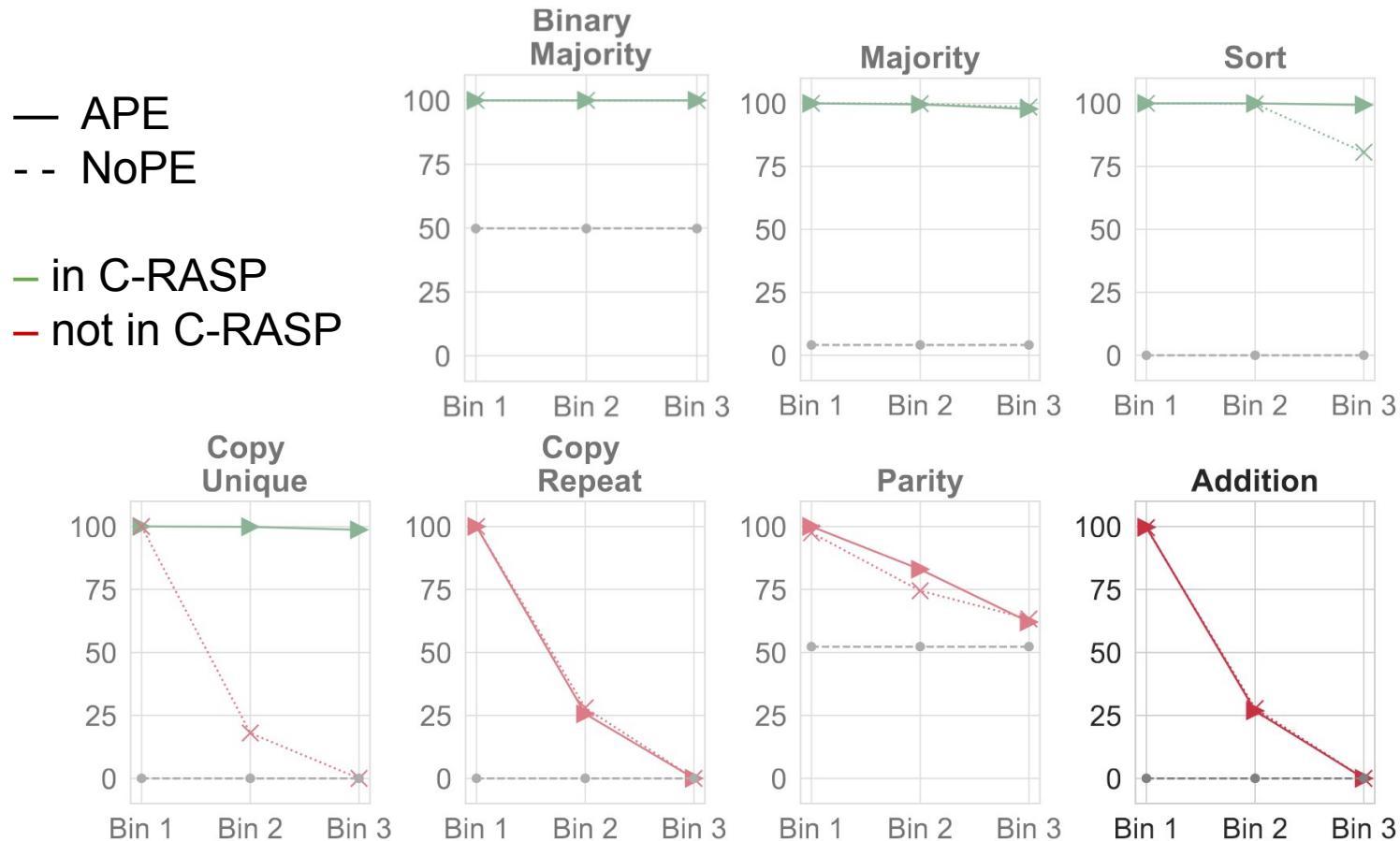


- APE
- NoPE
- in C-RASP
- not in C-RASP

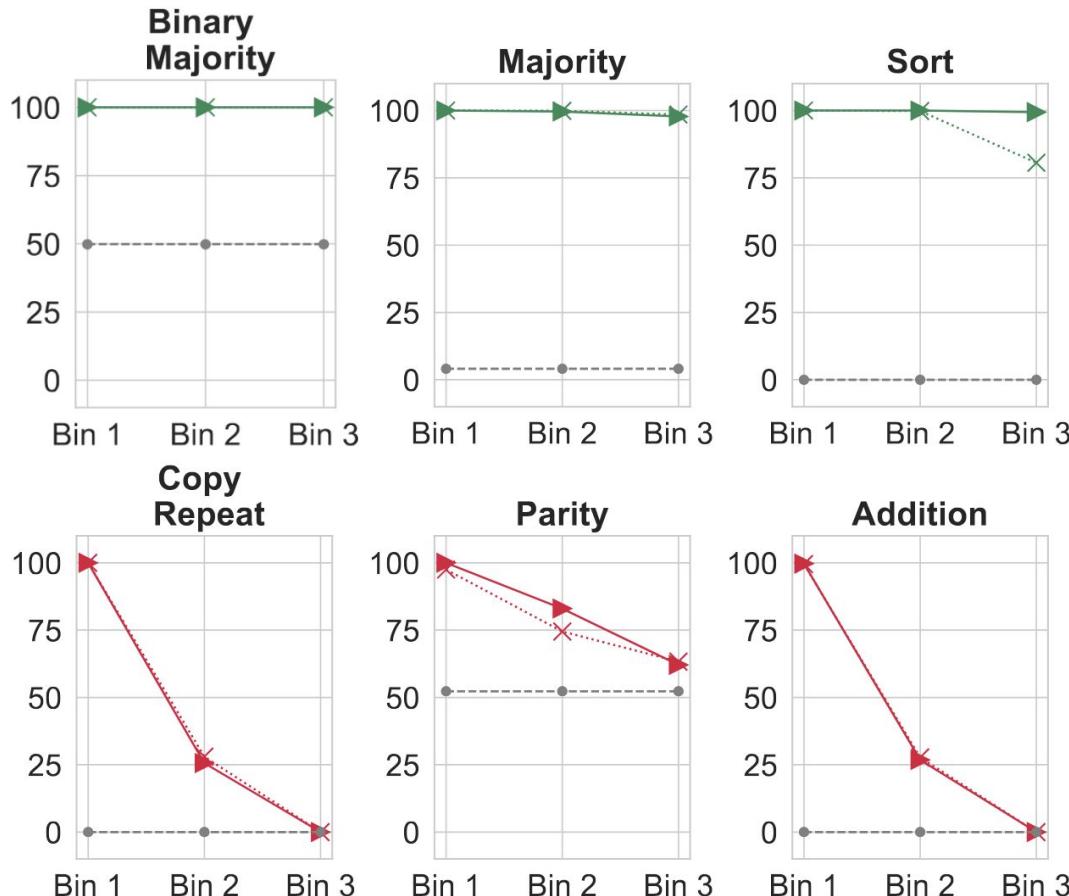


- APE
- NoPE
- in C-RASP
- not in C-RASP



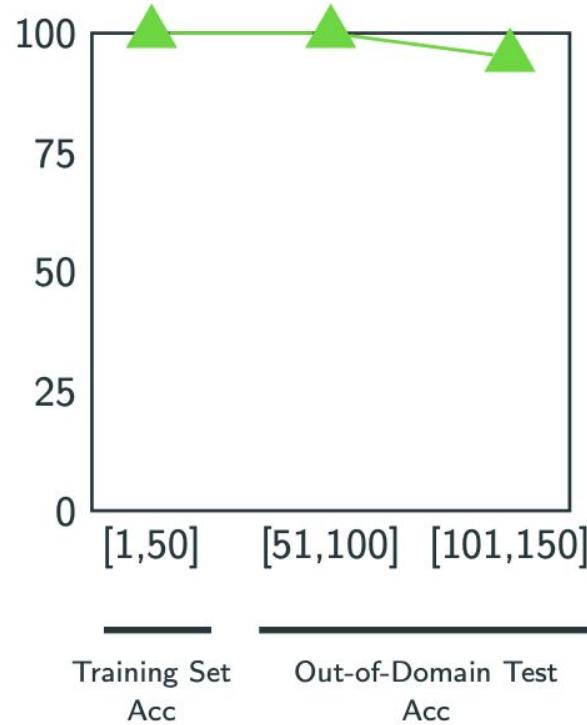


- APE
- NoPE
- in C-RASP
- not in C-RASP

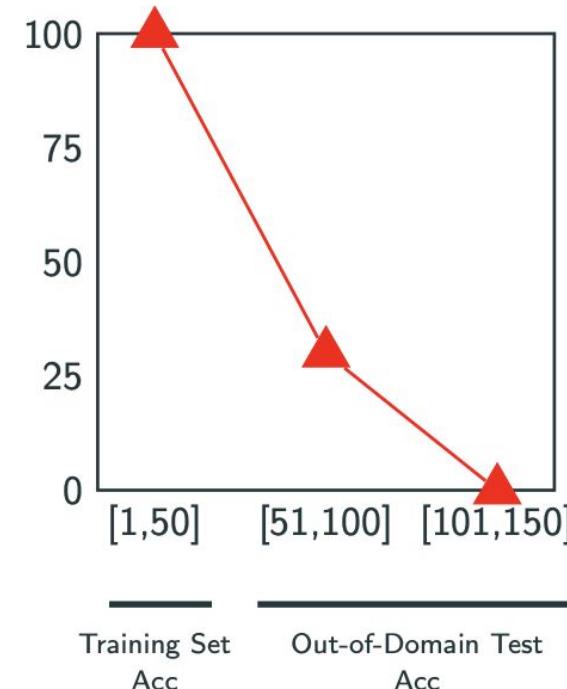


# (Non)Unique Copying in LLMs

% u r s z \$ u r s z @



% a b b a \$ a b b a @



# (Non)Unique Copying in LLMs

  Lorem-ipsum style copying:

# (Non)Unique Copying in LLMs

  Lorem-ipsum style copying:

  Lorem ad ipsum sed do ipsum sed aliqua

# (Non)Unique Copying in LLMs

  Lorem-ipsum style copying:

  Lorem ad ipsum sed do ipsum sed aliqua

  Lorem...

# (Non)Unique Copying in LLMs

  Lorem-ipsum style copying:

    Lorem ad ipsum sed do ipsum sed aliqua

    Lorem...

# (Non)Unique Copying in LLMs

  Lorem-ipsum style copying:

  Lorem ad ipsum sed do ipsum sed aliqua

  Lorem ad...

# (Non)Unique Copying in LLMs

  Lorem-ipsum style copying:

  Lorem **ad** ipsum sed do ipsum sed aliqua

  Lorem **ad**...

# (Non)Unique Copying in LLMs

  Lorem-ipsum style copying:

  Lorem ad ipsum sed do ipsum sed aliqua

  Lorem ad ipsum ...

# (Non)Unique Copying in LLMs

  Lorem-ipsum style copying:

    Lorem ad ipsum sed do ipsum sed aliqua

    Lorem ad ipsum...

# (Non)Unique Copying in LLMs

  Lorem-ipsum style copying:

  Lorem ad ipsum sed do ipsum sed aliqua

  Lorem ad ipsum...

# (Non)Unique Copying in LLMs

  Lorem-ipsum style copying:

    Lorem ad ipsum sed do ipsum sed aliqua

    Lorem ad ipsum sed...

# (Non)Unique Copying in LLMs

  Lorem-ipsum style copying:

  Lorem ad ipsum **sed** do ipsum **sed** aliqua

  Lorem ad ipsum **sed**...

# (Non)Unique Copying in LLMs

  Lorem-ipsum style copying:

  Lorem ad ipsum **sed do** ipsum **sed aliqua**

  Lorem ad ipsum **sed...**

# (Non)Unique Copying in LLMs

  Lorem-ipsum style copying:

  Lorem ad ipsum **sed do** ipsum **sed aliqua**

  Lorem ad ipsum **sed...**

**Prediction:** copying errors  
should appear when bigram  
transitions are ambiguous

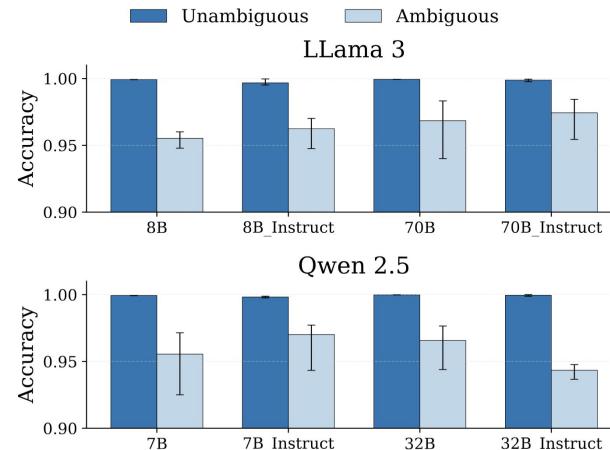
# (Non)Unique Copying in LLMs

  Lorem-ipsum style copying:

  Lorem ad ipsum **sed** **do** ipsum **sed** aliqua

  Lorem ad ipsum **sed**...

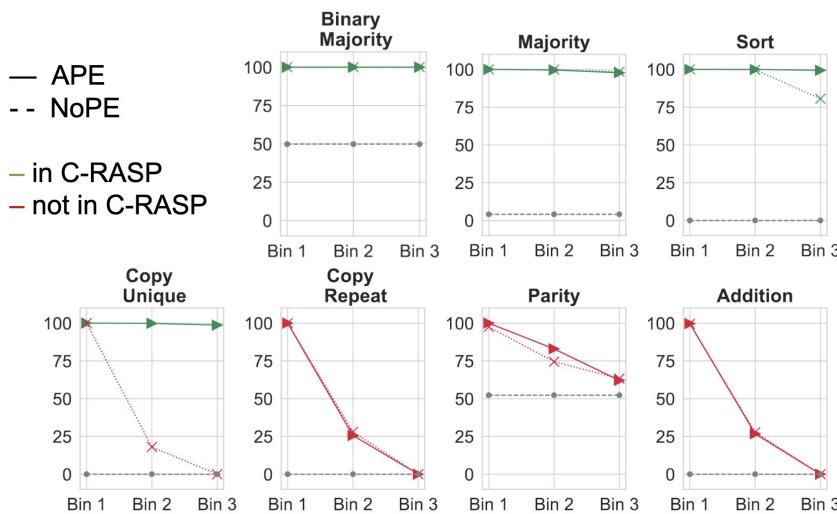
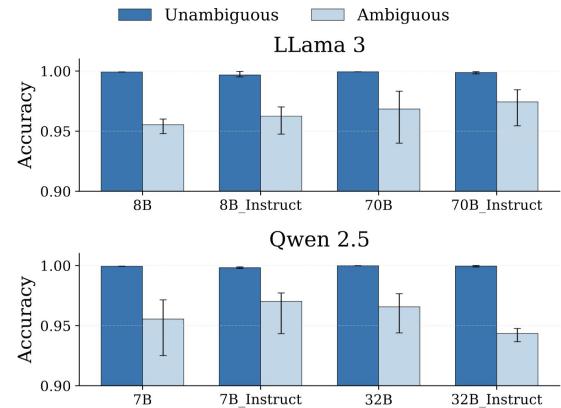
**Prediction:** copying errors  
should appear when bigram  
transitions are ambiguous



# On which tasks do transformers length-generalize?

## UNIQUE COPY

$$\begin{aligned}
 CP_a(i) &:= \# [j \leq i, j = i - 1] Q_a(j) & (1) \\
 CBIGRAM_{ab} &:= \# [j \leq i] Q_b(j) \wedge CP_a(j) \geq 1 & (2) \\
 NEXT_a(i) &:= \bigvee_{\sigma \in \Sigma} [Q_\sigma(i) \wedge CBIGRAM_{\sigma a}(i) \geq 1] & (3)
 \end{aligned}$$



# Questions for Future Work

Q1: Quantitative bounds for length generalization.

# Questions for Future Work

Q1: Quantitative bounds for length generalization.

How big is  $N_0(f)$ ?

*First steps:*

---

## Non-Asymptotic Length Generalization

---

Thomas Chen<sup>1</sup> Tengyu Ma<sup>1</sup> Zhiyuan Li<sup>2</sup>

### Quantitative Bounds for Length Generalization in Transformers

**Zachary Izzo\***  
*NEC Labs America*

ZACH@NEC-LABS.COM

**Eshaan Nichani\***  
*Princeton University*

ESHNICH@PRINCETON.EDU

**Jason D. Lee**  
*Princeton University*

JASONDLEE88@GMAIL.COM

# Questions for Future Work

Q2: Beyond individual tasks

# Questions for Future Work

## Q2: Beyond individual tasks

How can circuit sharing between task help length generalization?

*First steps:*

---

### Extrapolation by Association: Length Generalization Transfer in Transformers

---

Ziyang Cai\*  
University of Wisconsin-Madison

Nayoung Lee  
University of Wisconsin-Madison

Avi Schwarzschild  
Carnegie Mellon University

Samet Oymak  
University of Michigan

Dimitris Papailiopoulos  
University of Wisconsin-Madison  
Microsoft Research

---

### Length Generalization via Auxiliary Tasks

---

Pranjal Awasthi  
Google  
pranjalawasthi@google.com

Anupam Gupta  
NYU  
anupam.g@nyu.edu

Ravi Kumar  
Google  
ravi.k53@gmail.com

# Questions for Future Work

Q2: Beyond individual tasks

How can circuit sharing between task help length generalization?

Is there data that provably unlocks broad length generalization in reasoning?

*First steps:*

---

**Extrapolation by Association: Length Generalization  
Transfer in Transformers**

---

Ziyang Cai\*  
University of Wisconsin-Madison

Nayoung Lee  
University of Wisconsin-Madison

Avi Schwarzschild  
Carnegie Mellon University

Samet Oymak  
University of Michigan

Dimitris Papailiopoulos  
University of Wisconsin-Madison  
Microsoft Research

---

**Length Generalization via Auxiliary Tasks**

---

Pranjal Awasthi  
Google  
pranjalawasthi@google.com

Anupam Gupta  
NYU  
anupam.g@nyu.edu

Ravi Kumar  
Google  
ravi.k53@gmail.com

## Basic Algorithmic Abilities

1-step

Which abilities can transformers learn?

## High-level Reasoning Abilities

CoT

How costly is reasoning?

# Lower Bounds for Chain-of-Thought Reasoning in Hard-Attention Transformers

Alireza Amiribavandpour, Xinting Huang, Mark Rofin, Michael Hahn



# Without CoT

% 0 1 1 0 \$ e @

# Without CoT



% 0 1 1 0 \$ e @

very difficult

even in-distribution  
generalization is notoriously  
difficult on long strings

Without CoT 

With CoT 

% 0 1 1 0 \$ e @

% 0 1 1 0 \$

e.g. Anil et al 2022

Without CoT 

% 0 1 1 0 \$ e @

With CoT 

% 0 1 1 0 \$ e



Without CoT 

% 0 1 1 0 \$ e @

With CoT 

% 0 1 1 0 \$ e o

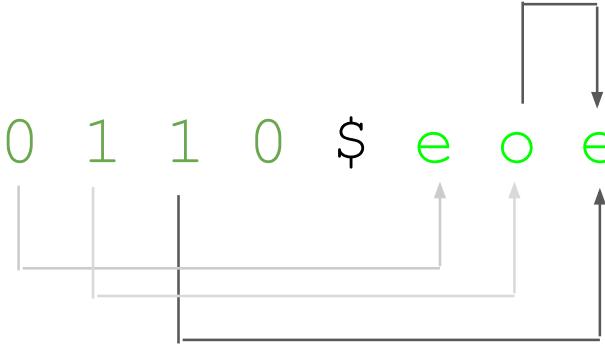


Without CoT 

% 0 1 1 0 \$ e @

With CoT 

% 0 1 1 0 \$ e o e

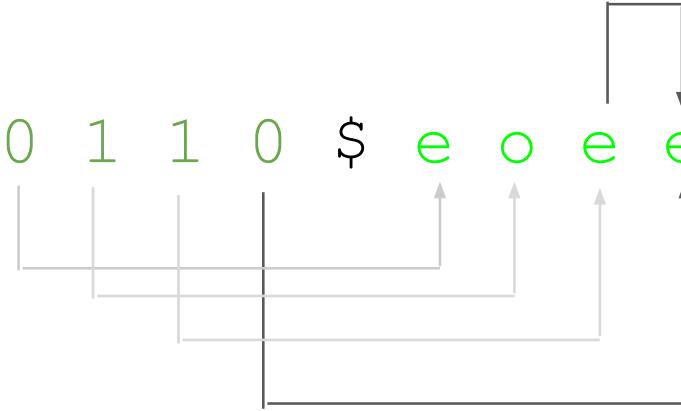


Without CoT 

% 0 1 1 0 \$ e @

With CoT 

% 0 1 1 0 \$ e o e e

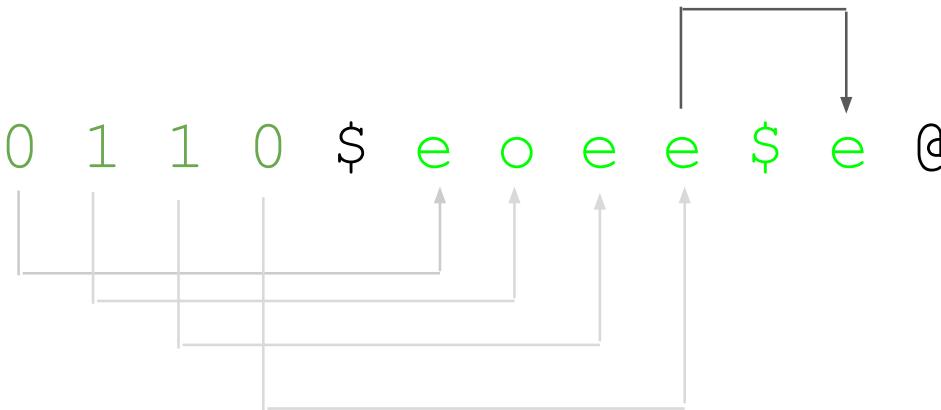


Without CoT 

% 0 1 1 0 \$ e @

With CoT 

% 0 1 1 0 \$ e o e e \$ e @



## Without CoT

% 0 1 1 0 \$ e @

Got it — let's carefully trace the movements step by step:

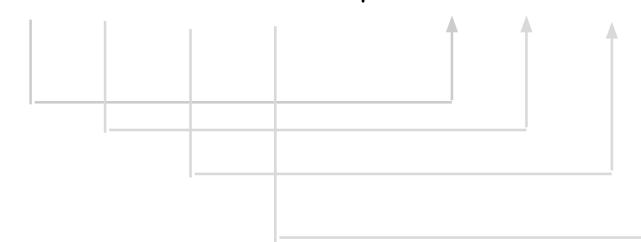
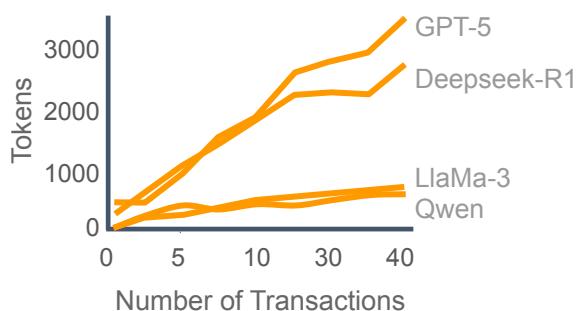
1. **Initial ownership:**
  - Paul → *encyclopedia*
  - Mary → *novel*
2. **Paul gave his book (encyclopedia) to Josh:**
  - Josh → *encyclopedia*
  - Paul → nothing
3. **Mary gave her book (novel) to Paul:**
  - Paul → *novel*
  - Mary → nothing
4. **Josh gave his book (encyclopedia) to Kim:**
  - Kim → *encyclopedia*
  - Josh → nothing
5. **Paul gave his book (novel) to Ruth:**
  - Ruth → *novel*
  - Paul → nothing

✓ Final ownership:

- Kim → *encyclopedia*
- Ruth → *novel*
- Paul, Mary, Josh → nothing

Answer: Kim has the encyclopedia.

## With CoT

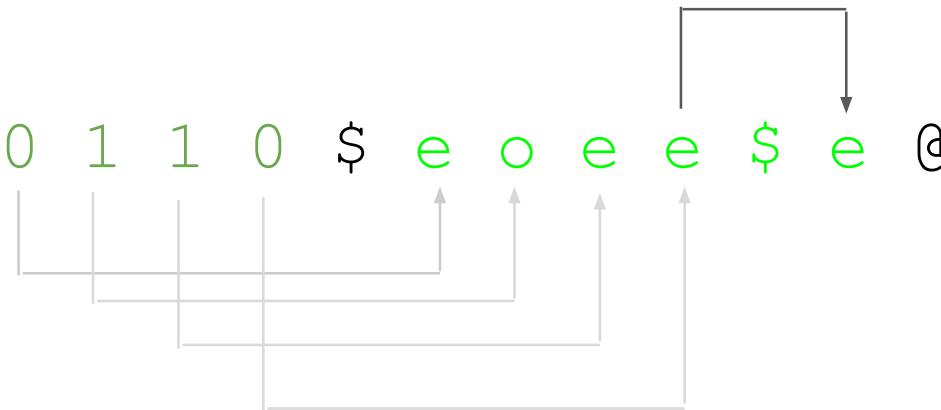


Without CoT

% 0 1 1 0 \$ e @

With CoT

% 0 1 1 0 \$ e o e e \$ e @



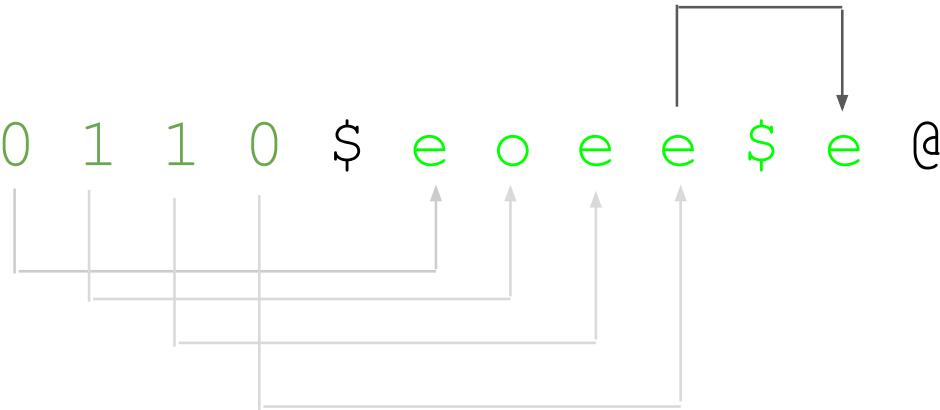
How much of this extra cost is needed?

Without CoT

% 0 1 1 0 \$ e @

With CoT

% 0 1 1 0 \$ e o e e \$ e @



How much of this extra cost is needed?

Can CoTs be condensed?

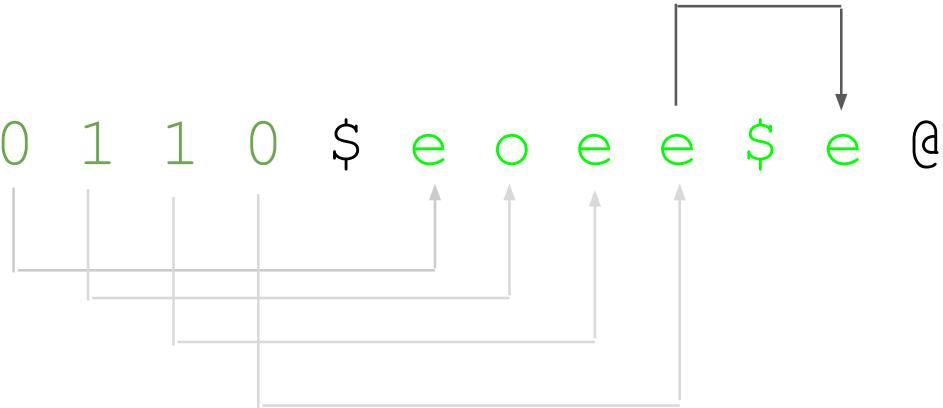
Perhaps to length  $\log N$  ?  $\sqrt{N}$  ?

Without CoT

% 0 1 1 0 \$ e @

With CoT

% 0 1 1 0 \$ e o e e \$ e @



How much of this extra cost is needed?

Can CoTs be condensed?

Perhaps to length  $\log N$  ?  $\sqrt{N}$  ?

This paper:  
Mostly, no  
compression  
possible.

Given an algorithmic problem, how does the CoT length scale with input length N?

Given an algorithmic problem, how does the CoT length scale with input length  $N$ ?

Analogue to classical computational complexity, but for LLMs.

**Our contribution: An Incompressibility Theorem for CoT.**

Given an algorithmic problem, how does the CoT length scale with input length  $N$ ?

Analogue to classical computational complexity, but for LLMs.

**Our contribution: An Incompressibility Theorem for CoT.**

Results in this paper apply in the regime where numerical precision in transformer is fixed while  $N \rightarrow \text{infty}$ .

Equivalently to “unique hardmax attention”.

# Upper Bound (prior work)

**Theorem:** If a Turing machine solves a problem in time  $T(n)$ , then a Transformer can solve with a CoT of length  $O(T(n))$ .

*e.g. Perez et al 2019; Merrill and Sabharwal 2024; and others*

# Upper Bound (prior work)

**Theorem:** If a Turing machine solves a problem in time  $T(n)$ , then a Transformer can solve with a CoT of length  $O(T(n))$ .

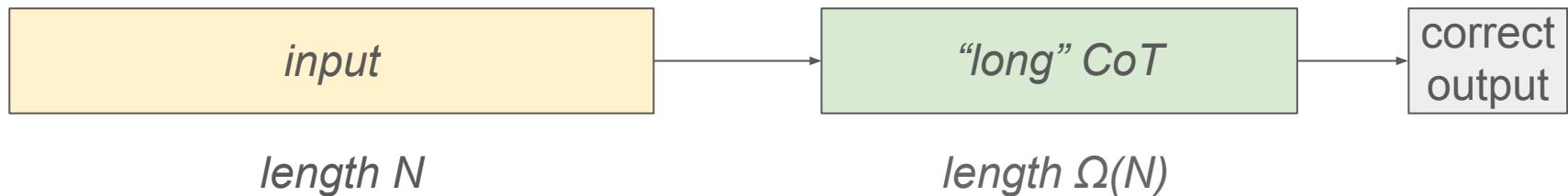
But this bound is not tight!

Transformers solve many problems without CoT.

# Our Lower Bound

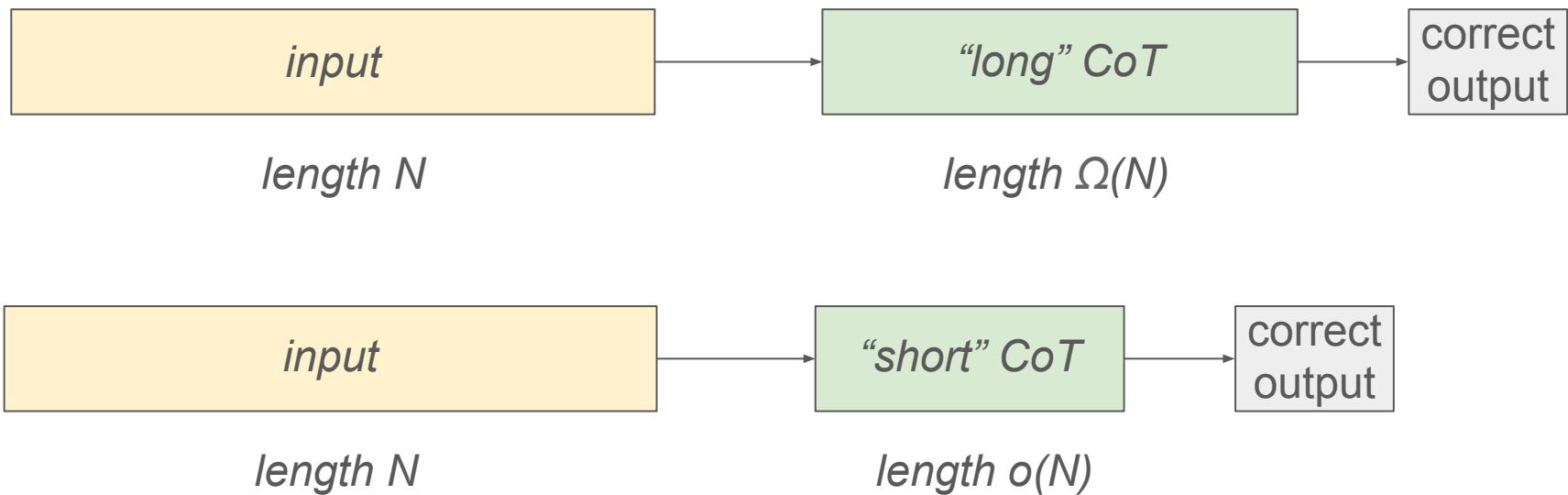
# Our Lower Bound

## Theorem



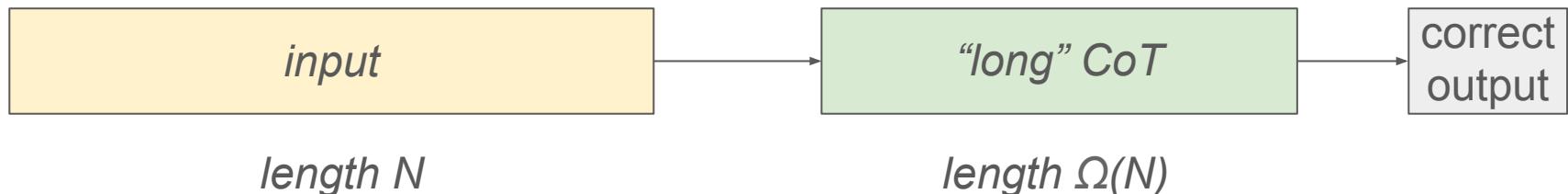
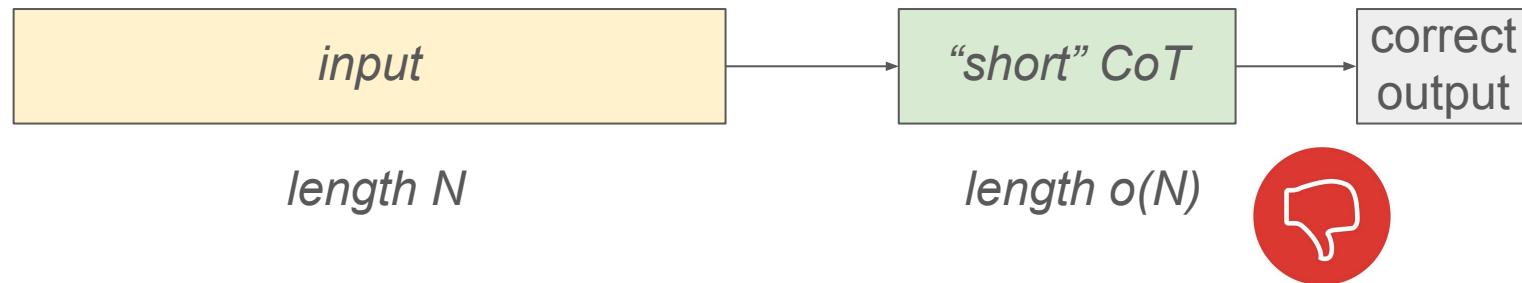
# Our Lower Bound

## Theorem



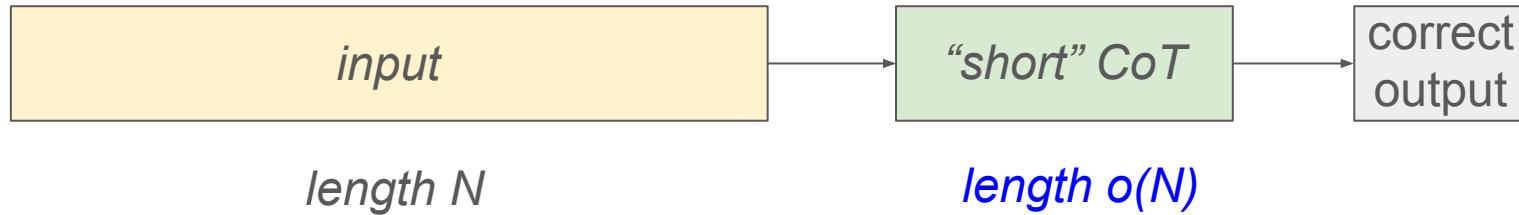
# Our Lower Bound

## Theorem

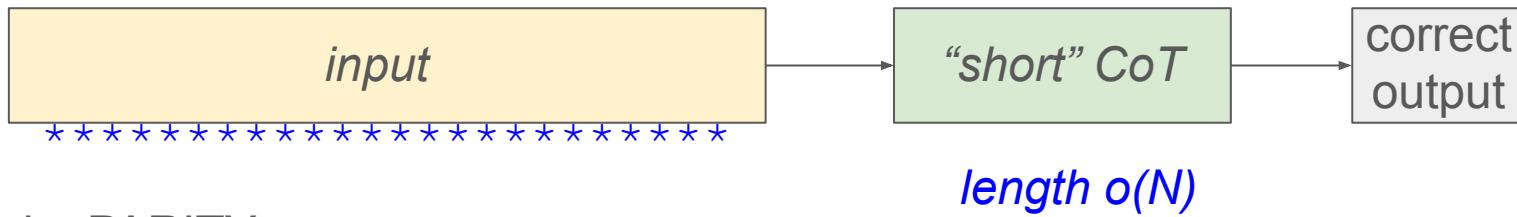


# Our Lower Bound

## Theorem



# Our Lower Bound Theorem

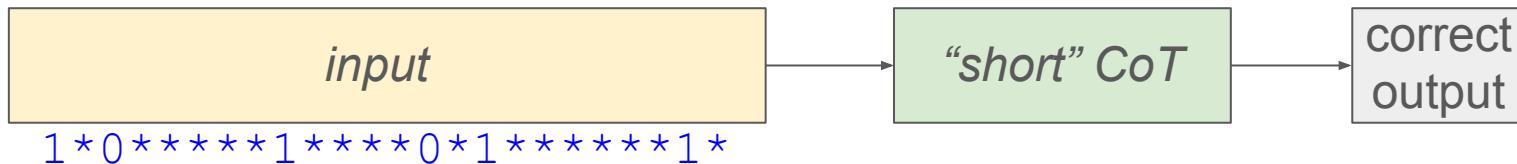


## Example: PARITY

010110111001010110101001  $\longrightarrow$  (some CoT)  $\longrightarrow$  "odd"

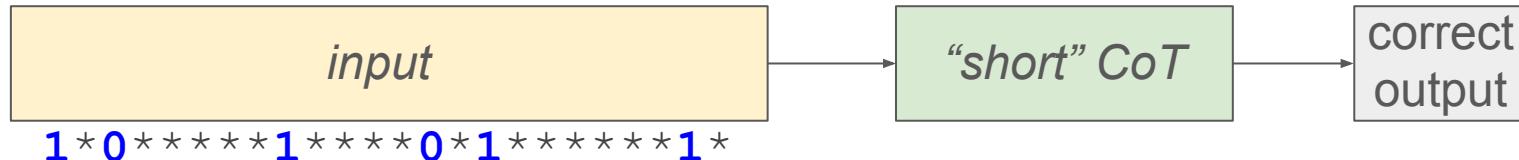
# Our Lower Bound

## Theorem



# Our Lower Bound

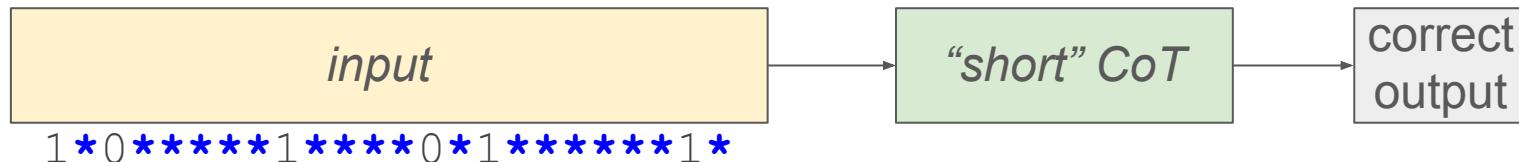
## Theorem



fixed to a  
specific input  
symbol

# Our Lower Bound

## Theorem

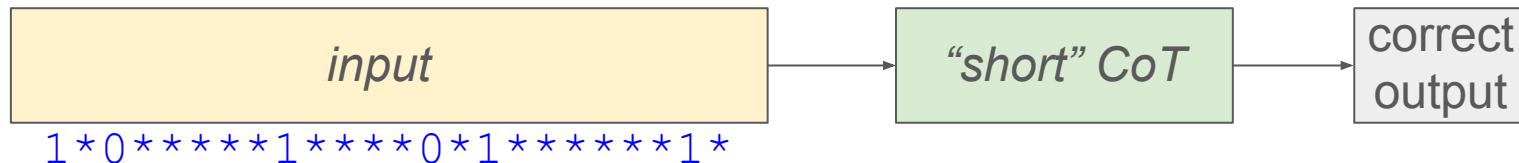


fixed to a  
specific input  
symbol

remain  
unassigned

# Our Lower Bound

## Theorem



10010001**1**0110**011**011100**10**

10011011**1**0000**001**000101**11**

11000000**1**1111**001**101010**10**

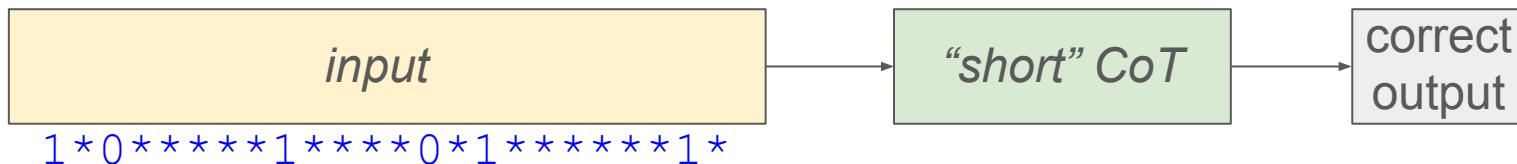
11011101**1**1110**011**010010**10**

10001001**1**0000**001**001111**11**

· · ·

# Our Lower Bound

## Theorem



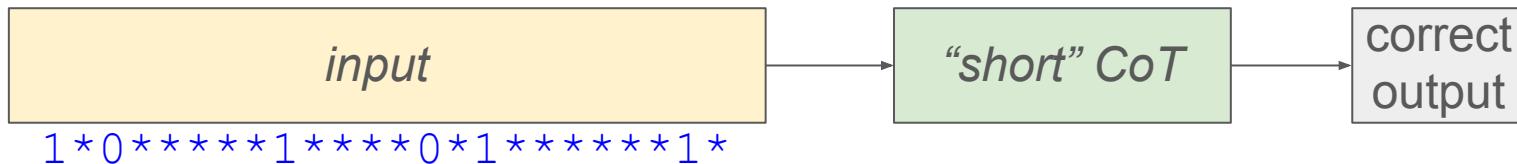
10010001**1**0110**011**011100**10**  
10011011**1**0000**001**000101**11**  
11000000**1**1111**001**10101010**10**  
11011101**1**1110**011**01001010**10**  
10001001**1**0000**001**0011111**11**  
. . .

abbaab  
abbaab  
abbaab  
abbaab  
abbaab  
. . .

*all matching  
inputs generate  
the same CoT*

# Our Lower Bound

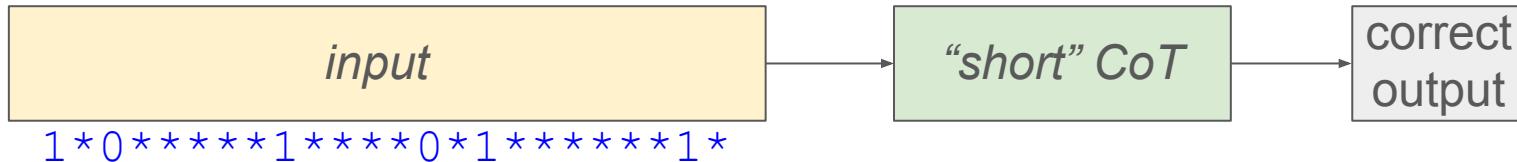
## Theorem



*In words:*

# Our Lower Bound

## Theorem

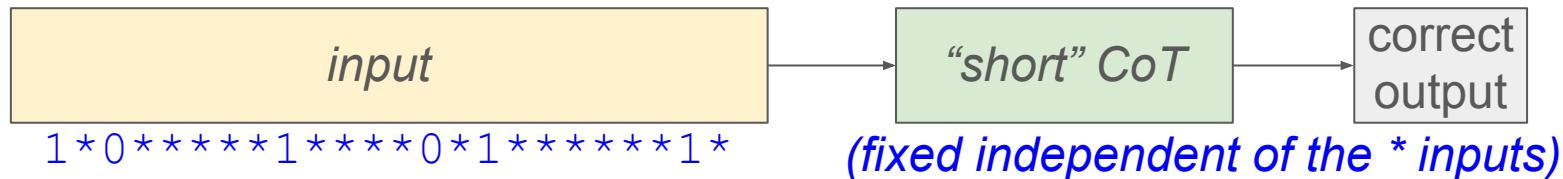


*In words:*

*Assume a (fixed-precision) transformer computes a CoT of length  $o(N)$ .*

# Our Lower Bound

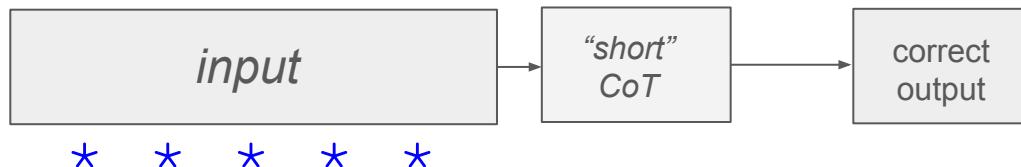
## Theorem



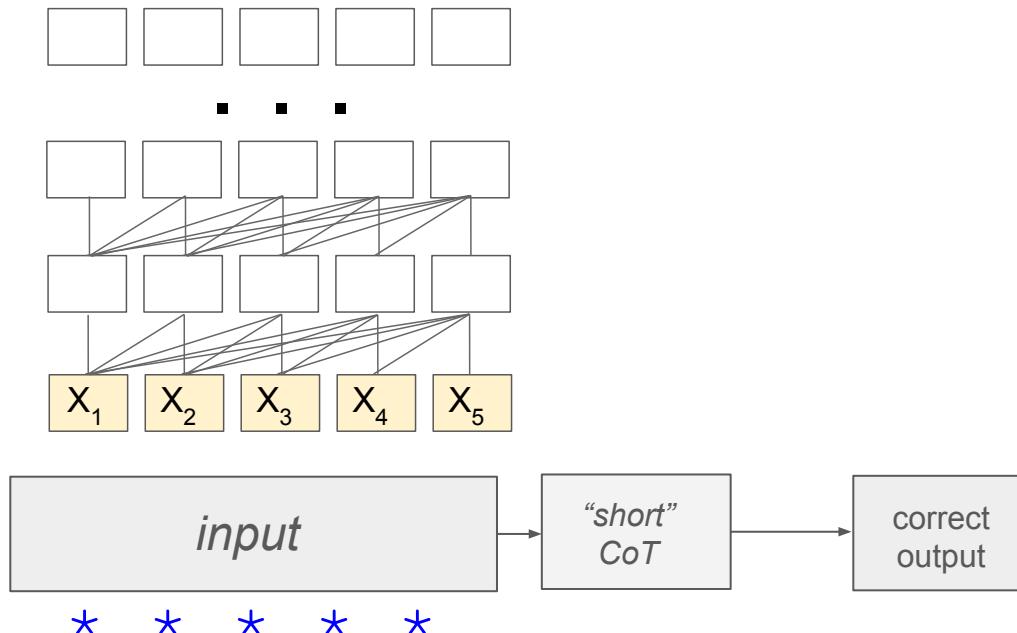
*In words:*

Assume a (fixed-precision) transformer computes a CoT of length  $o(N)$ .  
One can fix a small fraction of input bits that makes the CoT constant on all compatible input strings.

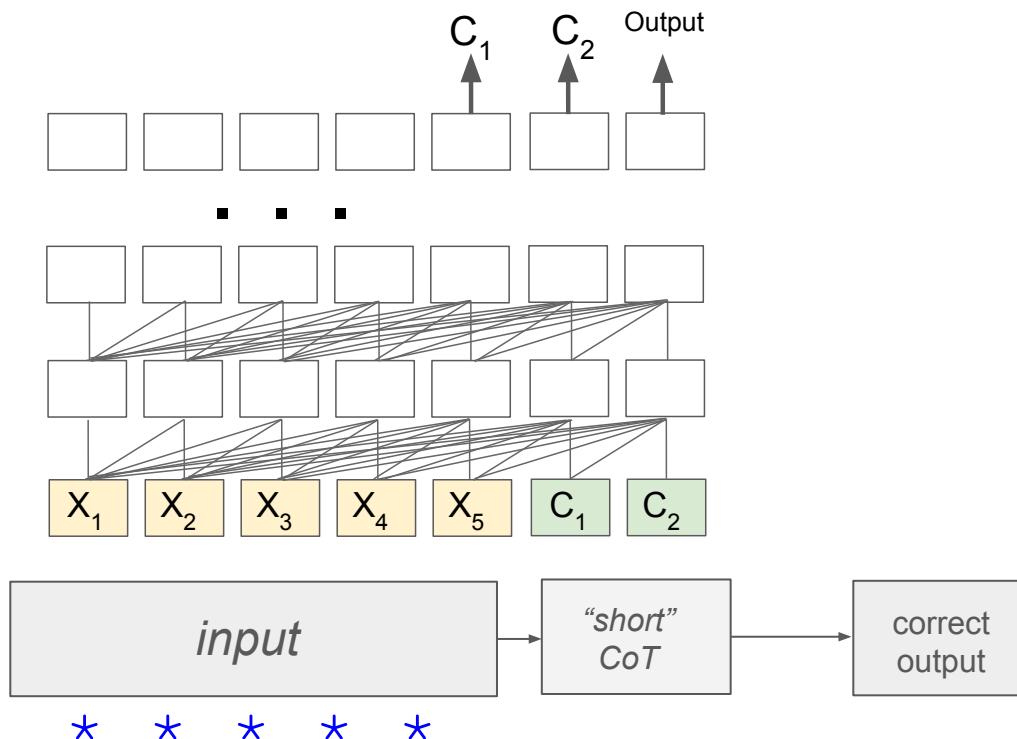
# Proof Idea



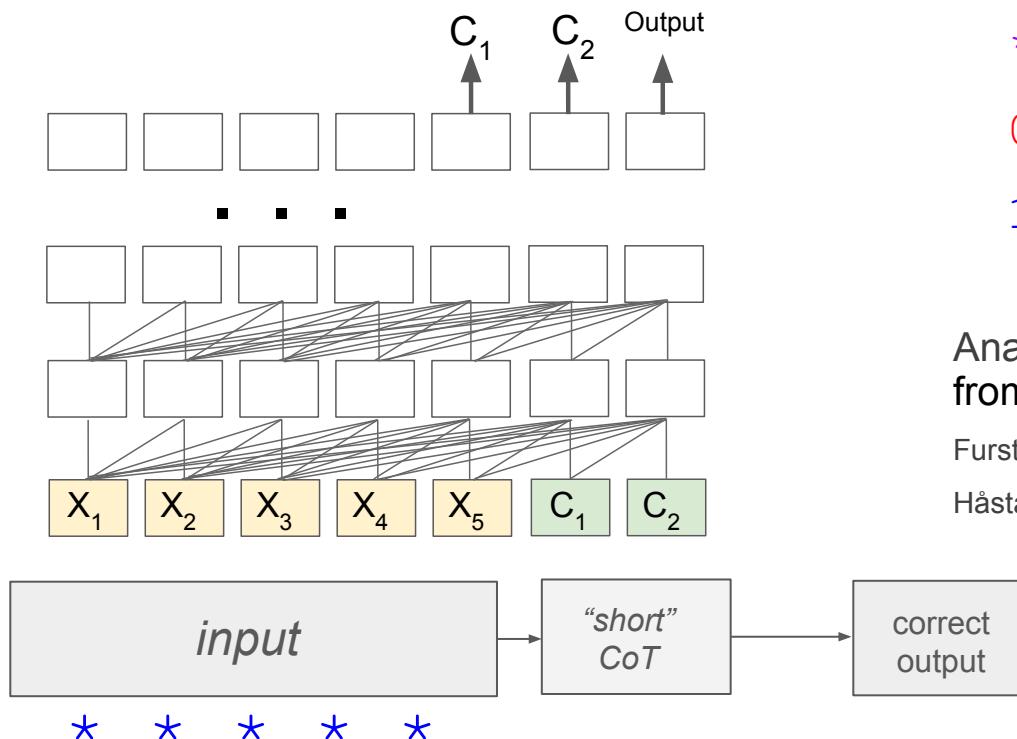
# Proof Idea



# Proof Idea



# Proof Idea



Set each input token i.i.d. to

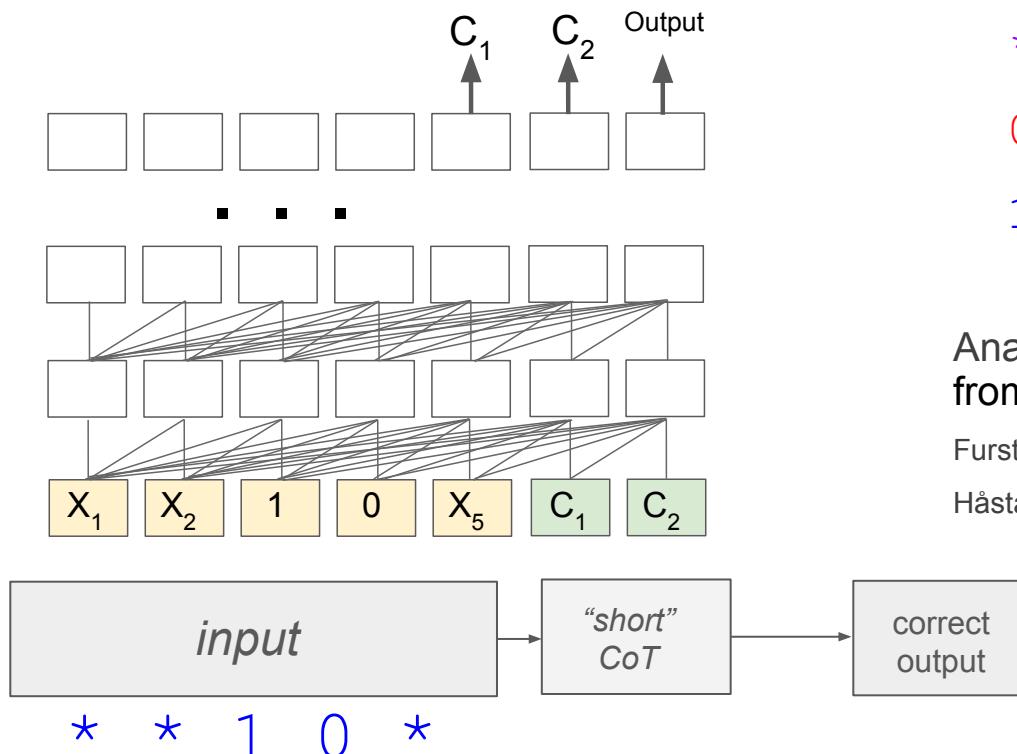
- \* with  $p=80\%$
- 0 with  $p=10\%$
- 1 with  $p=10\%$

Analogous to [Random Restrictions](#) from Circuit Complexity.

Furst, Saxe, Sipser 1984

Håstad 1986

# Proof Idea



Set each input token i.i.d. to

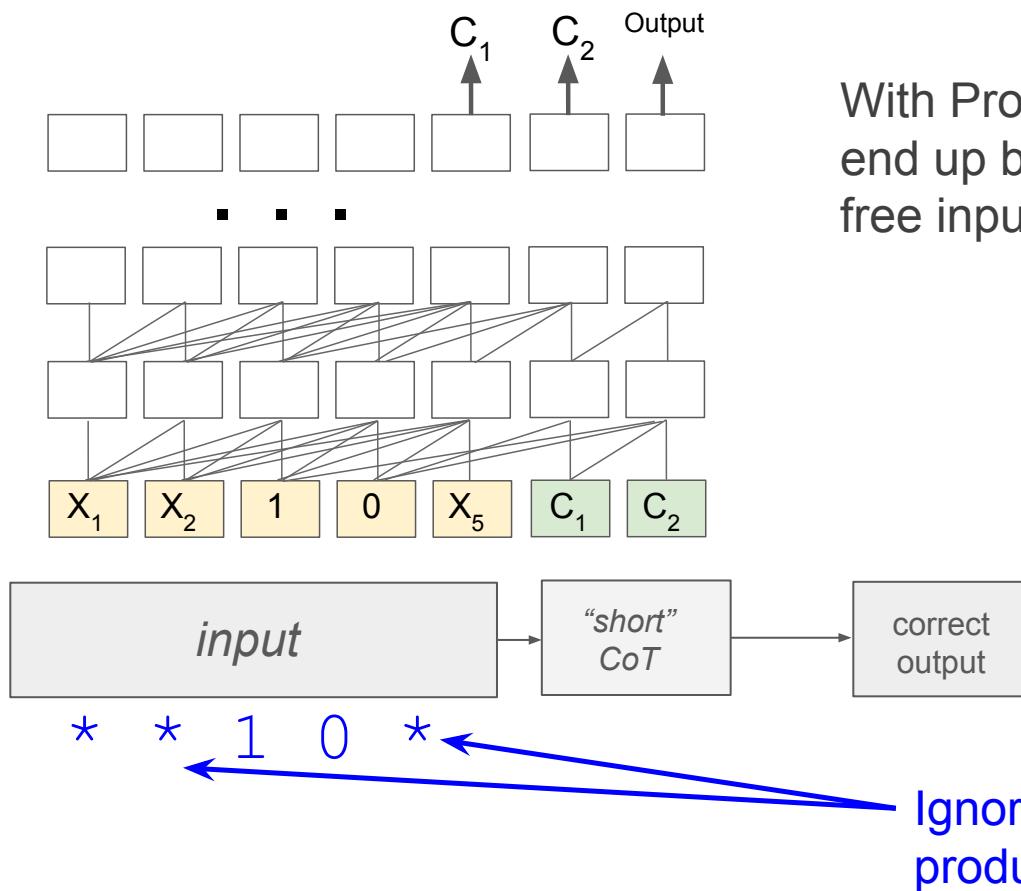
- $\star$  with  $p=80\%$
- $0$  with  $p=10\%$
- $1$  with  $p=10\%$

Analogous to **Random Restrictions** from Circuit Complexity.

Furst, Saxe, Sipser 1984

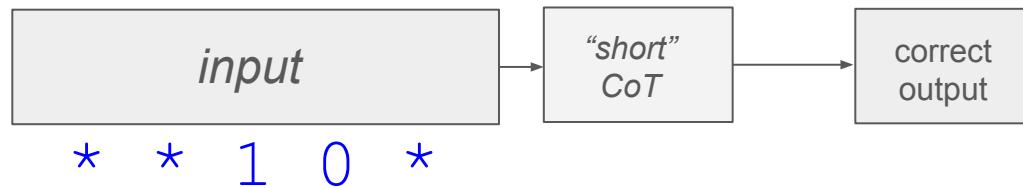
Håstad 1986

# Proof Idea



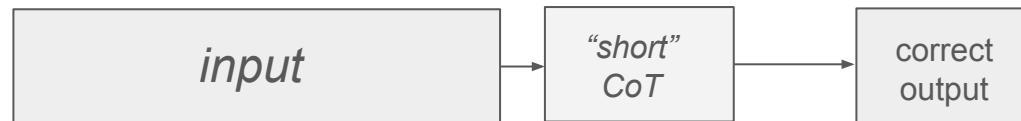
With Prob > 0, the transformer will end up being “distracted” from all free inputs.

# Proof Idea



# A General Lower Bound for CoT Length

## Theorem



\* \* 1 0 \*

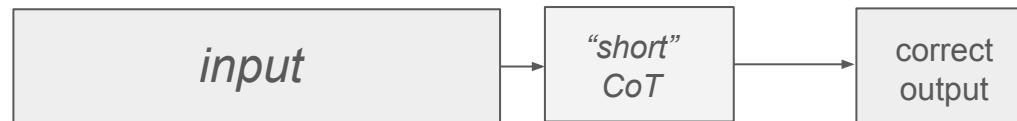
|   |   |          |          |   |    |
|---|---|----------|----------|---|----|
| 0 | 0 | <b>1</b> | <b>0</b> | 0 | ab |
| 0 | 1 | <b>1</b> | <b>0</b> | 0 | ab |
| 1 | 0 | <b>1</b> | <b>0</b> | 1 | ab |
| 0 | 0 | <b>1</b> | <b>0</b> | 1 | ab |

*all matching  
inputs generate  
the same CoT*

• • •

# A General Lower Bound for CoT Length

## Example: AND function



\* \* 1 0 \*

0 0 1 0 0

0 1 1 0 0

1 0 1 0 1

0 0 1 0 1

ab

ab

ab

ab

ab

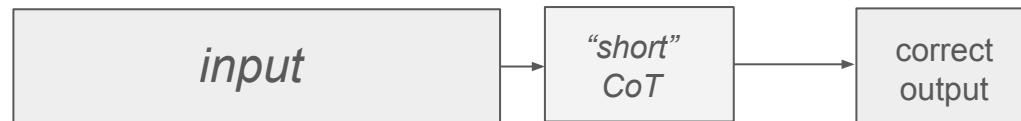
... ... ... ... ...

... ... ... ...



# A General Lower Bound for CoT Length

## Example: PARITY function



\* \* 1 0 \*

0 0 1 0 0

ab

ODD

0 1 1 0 0

ab

EVEN

1 0 1 0 1

ab

ODD

0 0 1 0 1

ab

EVEN



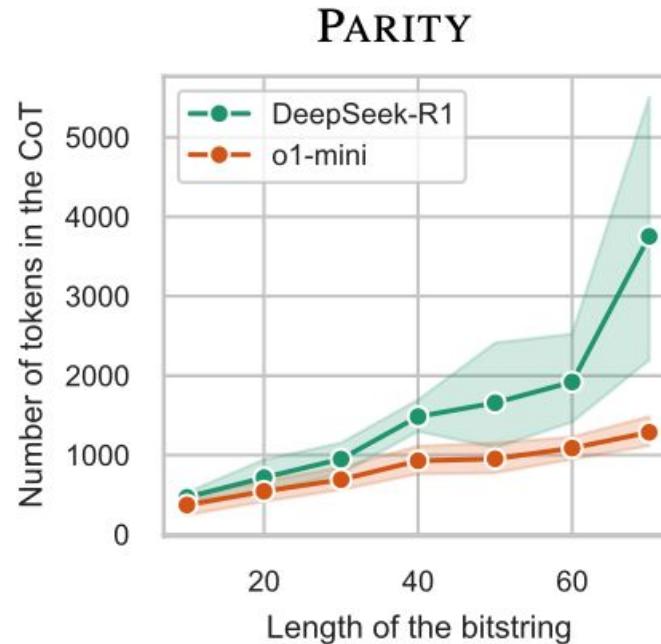
... ... . . .

# State Tracking

**Corollary:**

Any CoT for PARITY has length  $\Omega(N)$ .

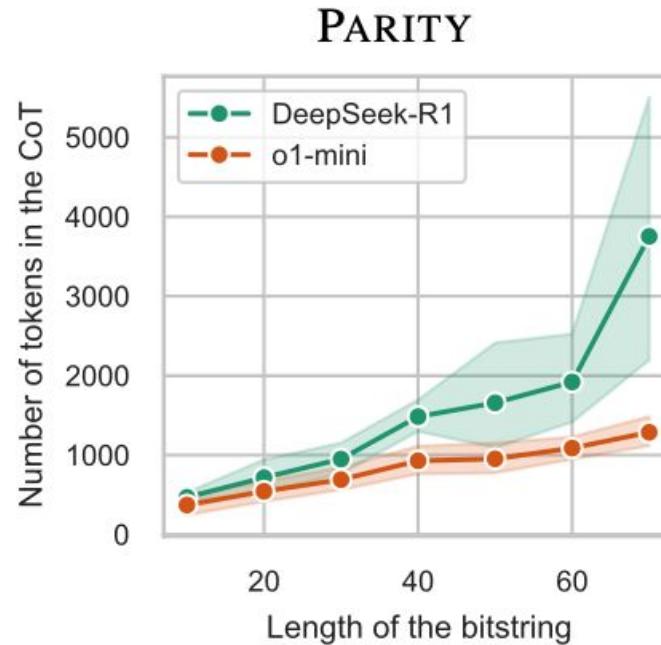
# Parity



We only include  
traces leading to the  
correct answer

Empirical results of LLMs performing PARITY

# Parity



We only include  
traces leading to the  
correct answer

The growth of CoT  
appears at least linear

Empirical results of LLMs performing PARITY

Please answer very briefly, and without external resources (e.g. Python interpreter). What is  $61157 \times 4555$ ?

The result of  $61157 \times 4555$  is **278657635**.

Please answer very briefly, and without external resources (e.g. Python interpreter). What is  $61157 \times 4555$ ?

The result of  $61157 \times 4555$  is 278657635. *incorrect*

actual: 278570135

See also:

for GPT4 zero shot: Dziri et al, NeurIPS 2023.

for: o3-mini: <https://x.com/yuntiandeng/status/1889704768135905332>

for DeepSeek R1: <https://x.com/nouhadziri/status/1886423897567805835>

# Multiplication

## Theorem:

Under a combinatorial conjecture, multiplying two  $N$ -bit numbers requires a CoT of length  $\Omega(N)$ .

What is the upper bound?

“naive”  
grade  
school  
algorithm:  
 $\Theta(N^2)$  steps



To compute  $61,157 \times 4,555$  using intermediate steps, let's break it down step-by-step.

We'll use the traditional method of multiplication, multiplying 61,157 by each digit of 4,555 (starting from the right), and then summing up the partial products.

---

### Step 1: Break down the numbers

- 61,157 (the multiplicand)
- 4,555 (the multiplier)

Write 4,555 as:

$$4,555 = 4,000 + 500 + 50 + 5$$

Thus, we need to compute:

$$61,157 \times 4,555 = 61,157 \times (4,000 + 500 + 50 + 5)$$

This becomes:

$$(61,157 \times 4,000) + (61,157 \times 500) + (61,157 \times 50) + (61,157 \times 5)$$

---

### Step 2: Compute partial products

1.  $61,157 \times 5$

$$61,157 \times 5 = 305,785$$

2.  $61,157 \times 50$

$$61,157 \times 50 = 3,057,850$$

3.  $61,157 \times 500$

$$61,157 \times 500 = 30,578,500$$

4.  $61,157 \times 4,000$

$$61,157 \times 4,000 = 244,628,000$$

---

### Step 3: Add the partial products

Now, let's sum all the partial products:

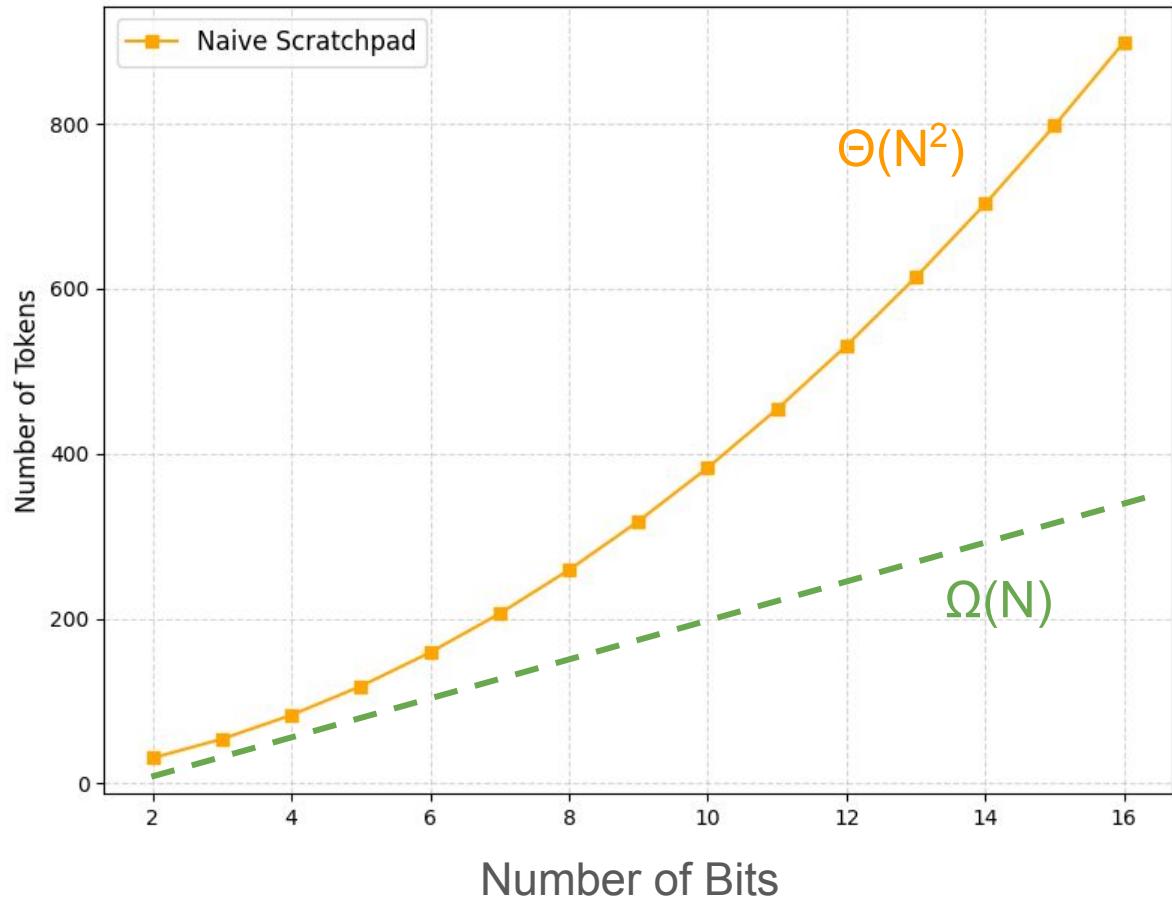
1. 305,785

2. 3,057,850

3. 30,578,500

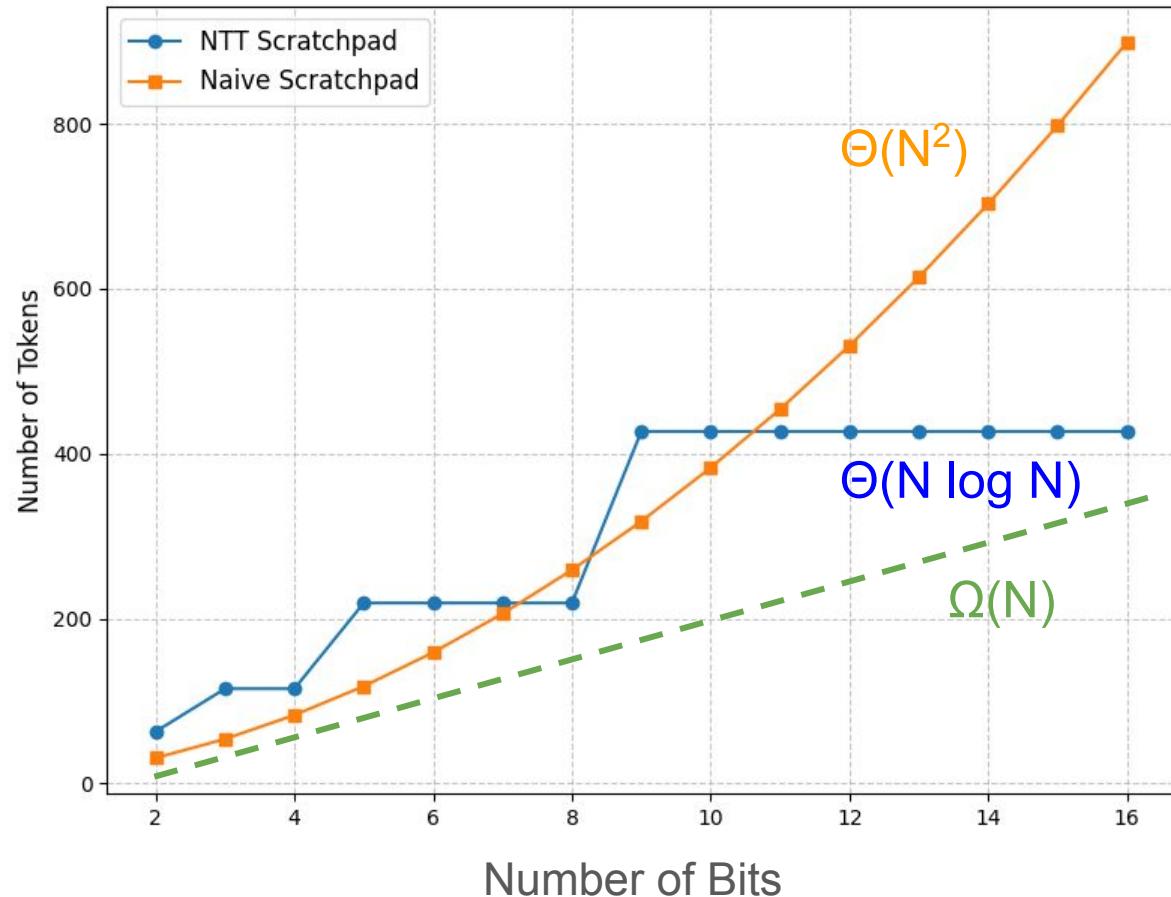
4. 244,628,000

Naive CoT requires  $\Theta(N^2)$  steps.



Naive CoT requires  
 $\Theta(N^2)$  steps.

CoT with  $\Theta(N \log N)$  steps exists.



# Order Statistics

8 45 82 71 5 28 65

list of  $N$  integers

# Order Statistics

8 45 82 71 5 28 65 -> 45

list of N integers      median

# Order Statistics

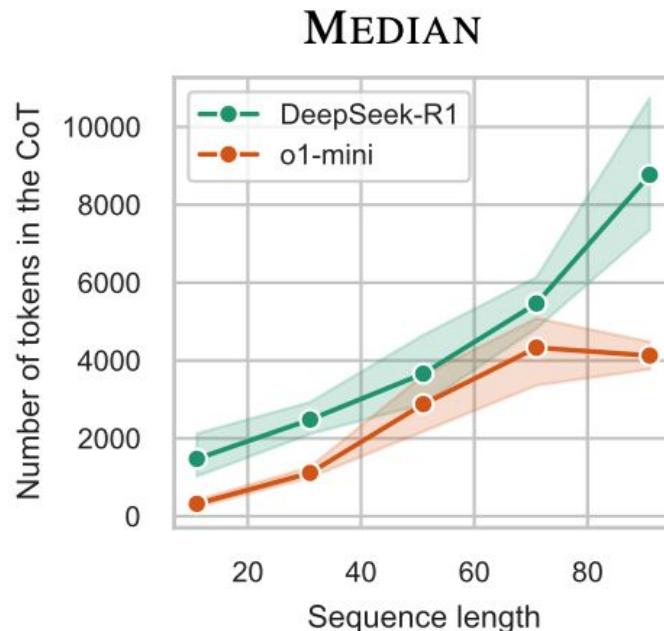
8 45 82 71 5 28 65 -> 45

list of N integers      median

## Theorem:

For MEDIAN, any CoT requires length  $\Omega(N)$ . This bound is attained.

# Order Statistics

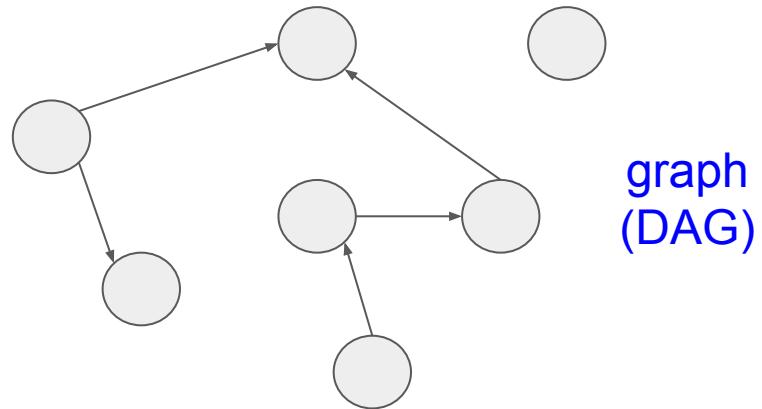


We only include  
traces leading to the  
correct answer

the growth of CoT  
appears at least linear

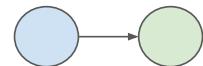
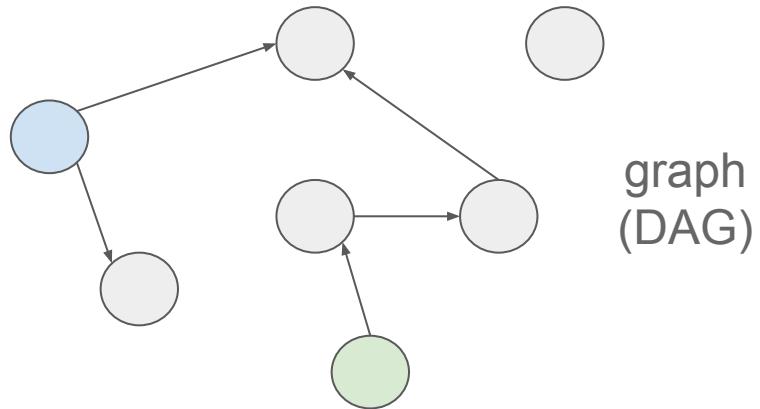
Empirical results of LLMs performing MEDIAN

# DAG reachability



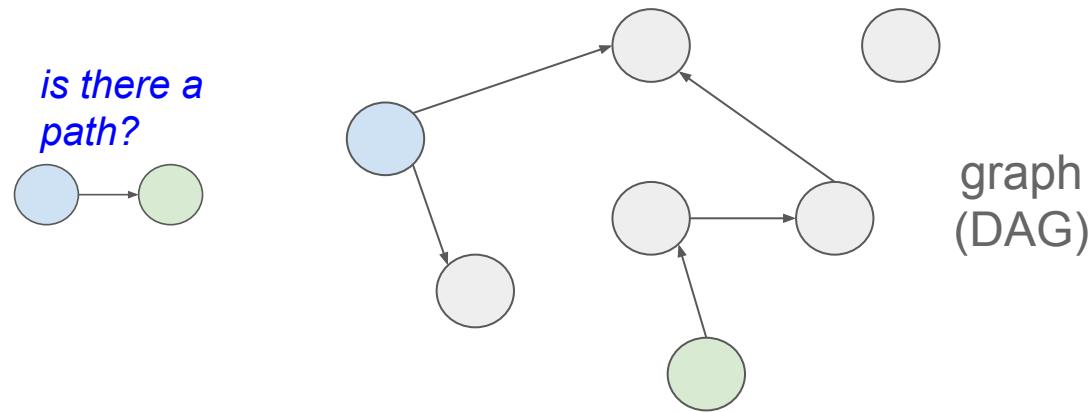
# DAG reachability

*is there a  
path?*



graph  
(DAG)

# DAG reachability



**Theorem:**

Any CoT requires length  $\Omega(|E|\log|V|)$  in the worst case.

This bound is attained.

# Barriers on Hidden Reasoning

Pfau, Jacob, William Merrill, and Samuel R. Bowman.  
"Let's think dot by dot: Hidden computation in  
transformer language models." COLM 2024.

# Barriers on Hidden Reasoning

$e=2.71828\dots$

**Prompt:** "How many of the first 6 digits of **e** are >5?"

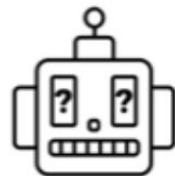
Pfau, Jacob, William Merrill, and Samuel R. Bowman.  
"Let's think dot by dot: Hidden computation in  
transformer language models." COLM 2024.

# Barriers on Hidden Reasoning

$e=2.71828\dots$

**Prompt:** "How many of the first 6 digits of **e** are >5?"

**Immediate answer**



**"7 digits are greater than 5"**

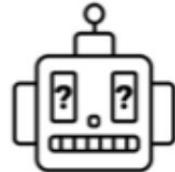
Pfau, Jacob, William Merrill, and Samuel R. Bowman.  
"Let's think dot by dot: Hidden computation in  
transformer language models." COLM 2024.

# Barriers on Hidden Reasoning

$e=2.71828\dots$

**Prompt:** "How many of the first 6 digits of **e** are >5?"

**Immediate answer**



**"7 digits are greater than 5"**

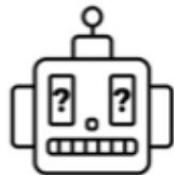
Pfau, Jacob, William Merrill, and Samuel R. Bowman.  
"Let's think dot by dot: Hidden computation in  
transformer language models." COLM 2024.

# Barriers on Hidden Reasoning

$e=2.71828\dots$

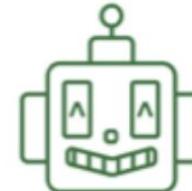
**Prompt:** "How many of the first 6 digits of e are >5?"

**Immediate answer**



"7 digits are greater than 5"

**Chain of thought**



**LM Continuations**

"2<5, 7>5, 1<5, 8>5, 2<5, 8>5,  
that's 3 digits"

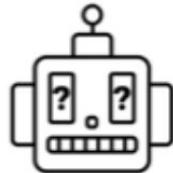
Pfau, Jacob, William Merrill, and Samuel R. Bowman.  
"Let's think dot by dot: Hidden computation in  
transformer language models." COLM 2024.

# Barriers on Hidden Reasoning

$e=2.71828\dots$

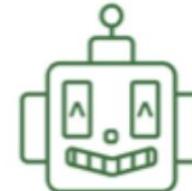
**Prompt:** "How many of the first 6 digits of e are >5?"

**Immediate answer**



"7 digits are greater than 5"

**Chain of thought**



**LM Continuations**

"2<5, 7>5, 1<5, 8>5, 2<5, 8>5,  
that's 3 digits"



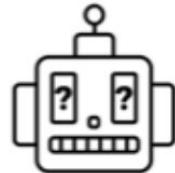
Pfau, Jacob, William Merrill, and Samuel R. Bowman.  
"Let's think dot by dot: Hidden computation in  
transformer language models." COLM 2024.

# Barriers on Hidden Reasoning

$e=2.71828\dots$

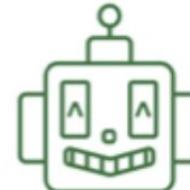
**Prompt:** "How many of the first 6 digits of **e** are  $>5$ ?"

**Immediate answer**



"7 digits are greater than 5"

**Chain of thought**



**LM Continuations**

"2<5, 7>5, 1<5, 8>5, 2<5, 8>5,  
that's 3 digits"



**Filler tokens**



" . . . . . 3 digits"

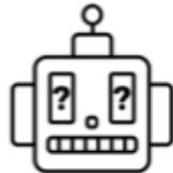
Pfau, Jacob, William Merrill, and Samuel R. Bowman.  
"Let's think dot by dot: Hidden computation in  
transformer language models." COLM 2024.

# Barriers on Hidden Reasoning

$e=2.71828\dots$

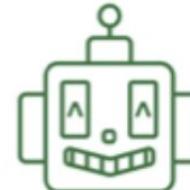
**Prompt:** "How many of the first 6 digits of **e** are  $>5$ ?"

**Immediate answer**



"7 digits are greater than 5"

**Chain of thought**

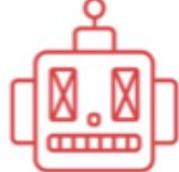


**LM Continuations**

"2<5, 7>5, 1<5, 8>5, 2<5, 8>5,  
that's 3 digits"



**Filler tokens**



" 3 digits"

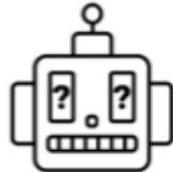
Pfau, Jacob, William Merrill, and Samuel R. Bowman.  
"Let's think dot by dot: Hidden computation in  
transformer language models." COLM 2024.

# Barriers on Hidden Reasoning

$e=2.71828\dots$

**Prompt:** "How many of the first 6 digits of e are >5?"

**Immediate answer**



"7 digits are greater than 5"

**Chain of thought**

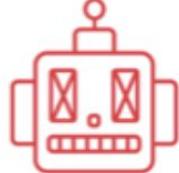


**LM Continuations**

"2<5, 7>5, 1<5, 8>5, 2<5, 8>5,  
that's 3 digits"



**Filler tokens**



" 3 digits"



Pfau, Jacob, William Merrill, and Samuel R. Bowman.  
"Let's think dot by dot: Hidden computation in  
transformer language models." COLM 2024.

# Barriers on Hidden Reasoning

$e=2.71828\dots$

**Prompt:** "How many of the first 6 digits of e are >5?"

Filler tokens



" . . . . . . 3 digits"



Pfau, Jacob, William Merrill, and Samuel R. Bowman.  
"Let's think dot by dot: Hidden computation in  
transformer language models." COLM 2024.

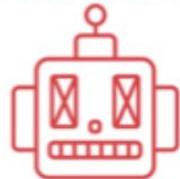
# Barriers on Hidden Reasoning

$e=2.71828\dots$

**Prompt:** "How many of the first 6 digits of e are >5?"

How powerful are such “dot-by-dot” CoTs?

Filler tokens



“ . . . . . . 3 digits”



Pfau, Jacob, William Merrill, and Samuel R. Bowman.  
"Let's think dot by dot: Hidden computation in  
transformer language models." COLM 2024.

# Barriers on Hidden Reasoning

$e=2.71828\dots$

**Prompt:** “How many of the first 6 digits of **e** are >5?”

How powerful are such “dot-by-dot” CoTs?

How well can transformers hide their reasoning?



“ . . . . . . 3 digits”



Pfau, Jacob, William Merrill, and Samuel R. Bowman.  
"Let's think dot by dot: Hidden computation in  
transformer language models." COLM 2024.

# Barriers on Hidden Reasoning

**Theorem:**

“Dot-by-dot” CoTs for PARITY exist...

# Barriers on Hidden Reasoning

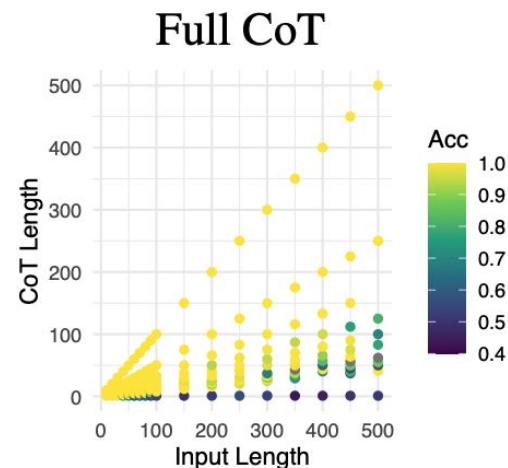
**Theorem:**

“Dot-by-dot” CoTs for PARITY exist, but require **super-polynomial** length.

# Barriers on Hidden Reasoning

## Theorem:

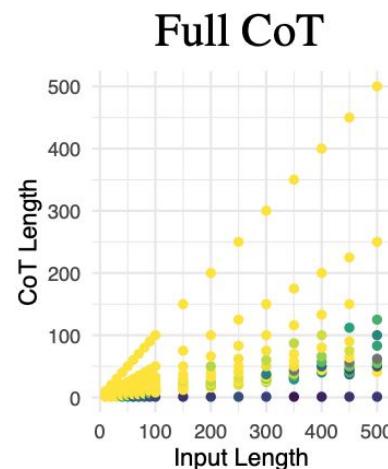
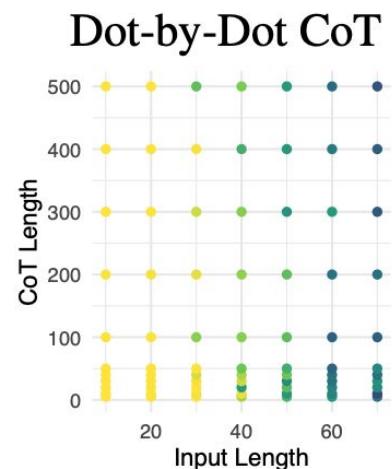
“Dot-by-dot” CoTs for PARITY exist, but require super-polynomial length.



# Barriers on Hidden Reasoning

## Theorem:

“Dot-by-dot” CoTs for PARITY exist, but require super-polynomial length.



Empirical results of transformers *trained* on PARITY

# Barriers on Hidden Reasoning

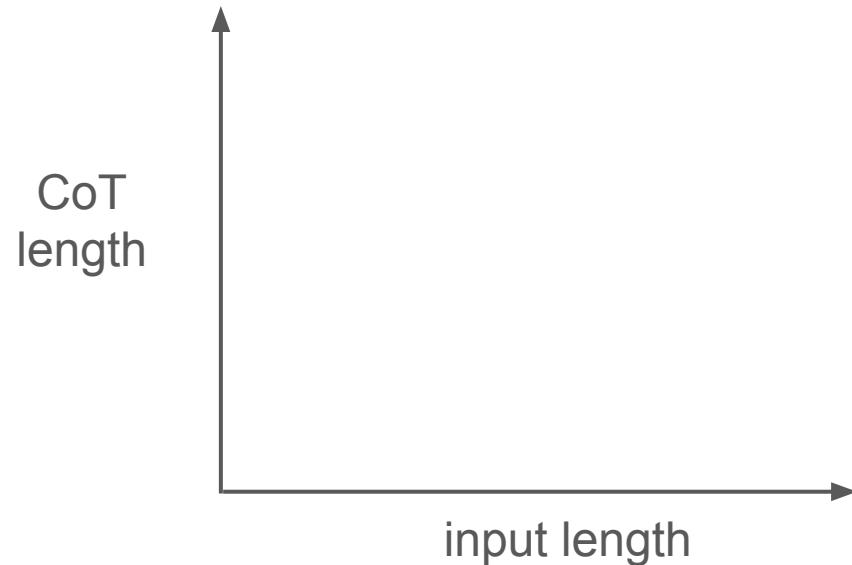
## Theorem:

“Dot-by-dot” CoTs for PARITY exist, but require super-polynomial length.

Hidden Reasoning is possible,  
but very expensive.

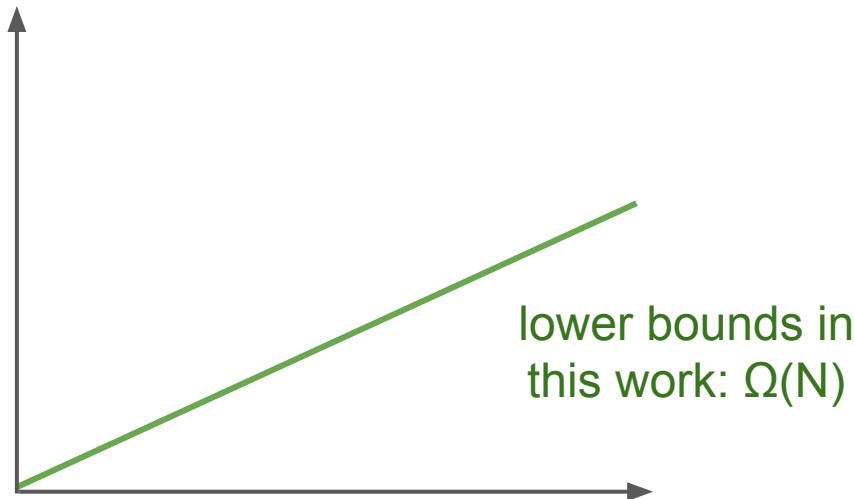
# Questions for Future Work

Q3: Superlinear lower bounds for CoTs



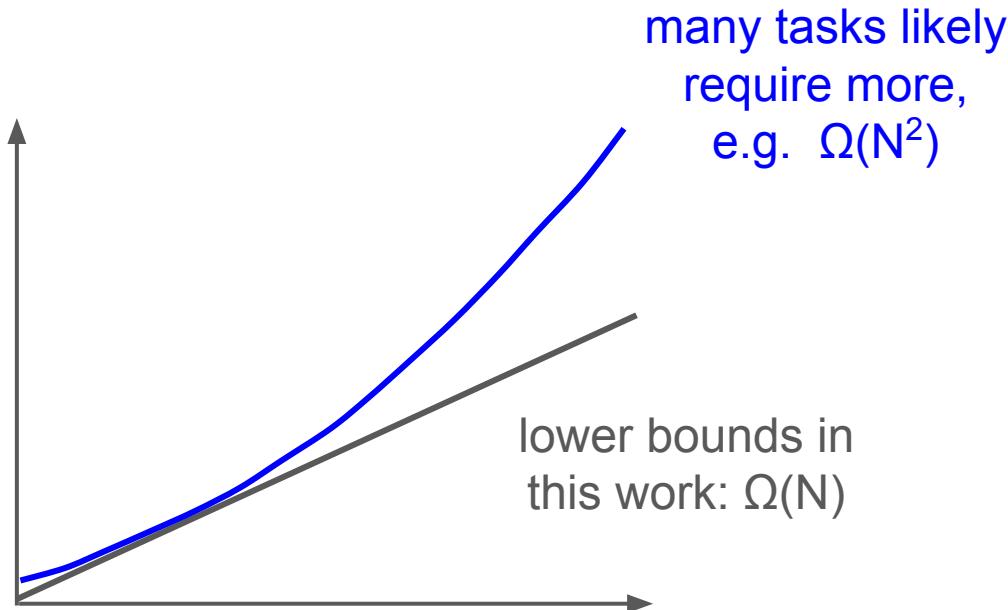
# Questions for Future Work

Q3: Superlinear lower bounds for CoTs



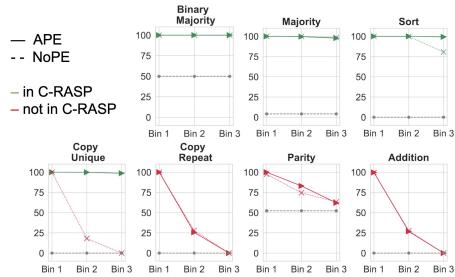
# Questions for Future Work

Q3: Superlinear lower bounds for CoTs

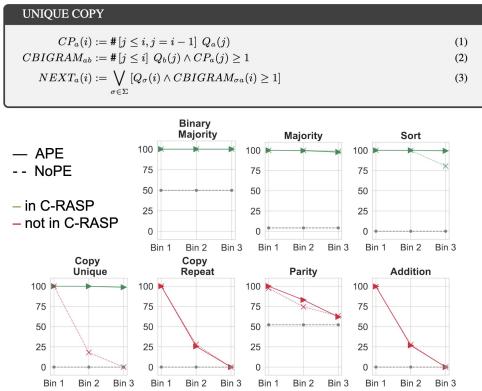


# Length Generalization

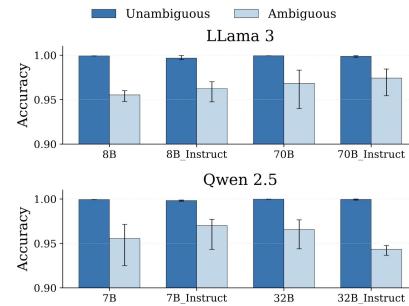
| UNIQUE COPY                                                                                    |     |
|------------------------------------------------------------------------------------------------|-----|
| $CP_a(i) := \#\{j \leq i, j = i - 1\} Q_a(j)$                                                  | (1) |
| $CBIGRAM_{ab} := \#\{j \leq i\} Q_b(j) \wedge CP_a(j) \geq 1$                                  | (2) |
| $NEXT_n(i) := \bigvee_{\sigma \in \Sigma} \{Q_\sigma(i) \wedge CBIGRAM_{\sigma n}(i) \geq 1\}$ | (3) |



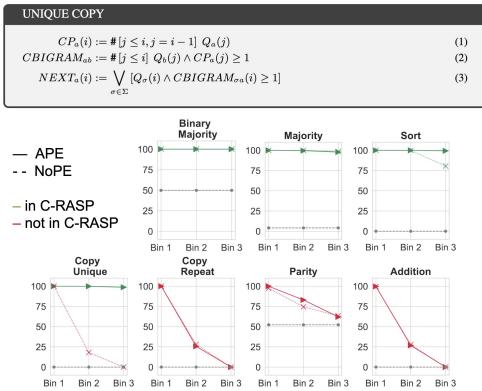
# Length Generalization



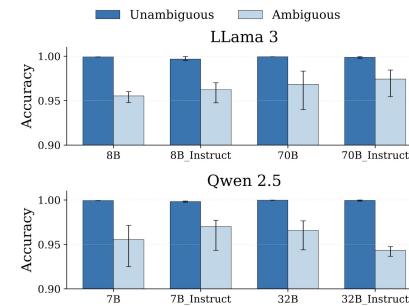
# Constrains LLM Abilities



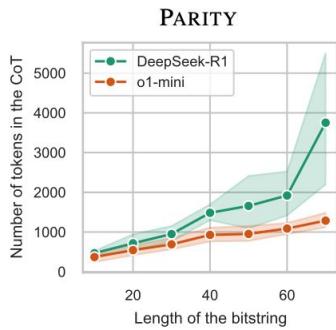
# Length Generalization



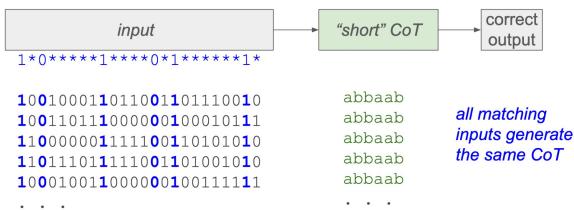
# Constrains LLM Abilities



# Lower Bounds for CoT



## Theorem



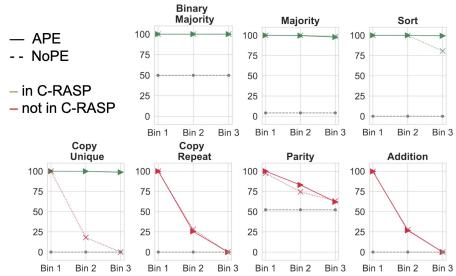
# Length Generalization

**UNIQUE COPY**

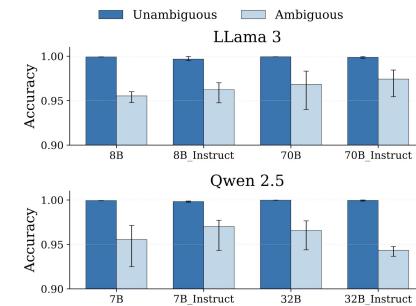
$$CP_n(i) := \#\{j \leq i, j = i-1] \mid Q_n(j)\} \quad (1)$$

$$CBIGRAM_{ab} := \#\{j \leq i] \mid Q_b(j) \wedge CP_a(j) \geq 1\} \quad (2)$$

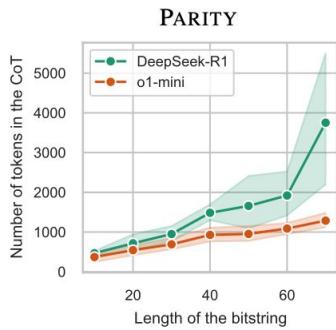
$$NEXT_n(i) := \bigvee_{\sigma \in \Sigma} \{Q_\sigma(i) \wedge CBIGRAM_{\sigma n}(i) \geq 1\} \quad (3)$$



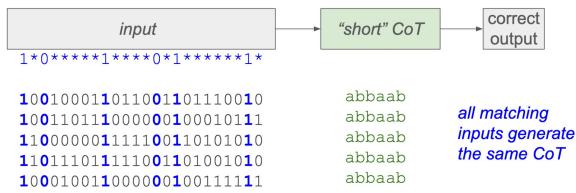
# Constrains LLM Abilities



# Lower Bounds for CoT



## Theorem



# Barriers against Hidden Reasoning

