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A2

A4

A3

A4

A4 16
training 

data

length n length 2n

test 
examples
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addition 
doesn’t 
length 
generalize 
with standard 
positional 
encodings 
(e.g. CITE)
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Prediction: copying errors 
should appear when bigram 
transitions are ambiguous
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(Non)Unique Copying in LLMs
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Questions for Future Work

Q2: Beyond individual tasks

How can circuit sharing between task help length generalization?

Is there data that provably unlocks broad length generalization in reasoning?

First steps:
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Basic Algorithmic 
Abilities

High-level Reasoning 
Abilities

1-step CoT

How costly is 
reasoning?

Which abilities can 
transformers learn?
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Lower Bounds for Chain-of-Thought 
Reasoning in Hard-Attention Transformers
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very difficult

even in-distribution 
generalization is notoriously 

difficult on long strings
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Without CoT With CoT

% 0 1 1 0 $ e o e e $ e @

cf. Deng et al 2023

How much of this extra cost is needed?
Can CoTs be condensed?
Perhaps to length log N ?          ?  

This paper: 
Mostly, no 

compression 
possible.

24
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Given an algorithmic problem, how does the CoT length 
scale with input length N?

Analogue to classical computational complexity, but for LLMs.

Our contribution: An Incompressibility Theorem for CoT.

Results in this paper apply in the regime where numerical precision in 
transformer is fixed while N → infty.

Equivalently to “unique hardmax attention”.
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Upper Bound (prior work)

Theorem: If a Turing machine solves a problem in time T(n), then a 
Transformer can solve with a CoT of length O(T(n)).

e.g. Perez et al 2019; Merrill and Sabharwal 2024; and others
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Upper Bound (prior work)

Theorem: If a Turing machine solves a problem in time T(n), then a 
Transformer can solve with a CoT of length O(T(n)).

But this bound is not tight!

Transformers solve many problems without CoT.
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Our Lower Bound
Theorem

************************

Example: PARITY

010110111001010110101001 (some CoT) “odd”

length o(N)

correct 
output“short” CoT
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fixed to a 
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output“short” CoT

27

input



Our Lower Bound
Theorem

1*0*****1****0*1******1*

correct 
output“short” CoT

27

100100011011001101110010
100110111000000100010111
110000001111100110101010
110111011111001101001010
100010011000000100111111
. . . 

input



Our Lower Bound
Theorem

1*0*****1****0*1******1*

all matching 
inputs generate 
the same CoT

100100011011001101110010
100110111000000100010111
110000001111100110101010
110111011111001101001010
100010011000000100111111
. . . 

correct 
output

abbaab
abbaab
abbaab
abbaab
abbaab
. . .

“short” CoT

27
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In words:
Assume a (fixed-precision) transformer computes a CoT of length o(N).

correct 
output“short” CoT
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Our Lower Bound
Theorem

1*0*****1****0*1******1* (fixed independent of the * inputs)

In words:
Assume a (fixed-precision) transformer computes a CoT of length o(N).
One can fix a small fraction of input bits that makes the CoT constant on all 
compatible input strings.

correct 
output“short” CoT

27

input
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Analogous to Random Restrictions 
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C1 C2X1 X2  1  0 X5

. . .
C1 C2

Output

input

 * * 1 0 *

Set each input token i.i.d. to

with p=10%

with p=80%

with p=10%1

0

 *

Analogous to Random Restrictions 
from Circuit Complexity.
Furst, Saxe, Sipser 1984
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correct 
output

“short” 
CoT

C1 C2X1 X2  1  0 X5

. . .
C1 C2

Output

input

 * * 1 0 *

With Prob > 0, the transformer will 
end up being “distracted” from all 
free inputs.

Ignored when 
producing CoT!
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A General Lower Bound for CoT Length
Theorem

 * * 1 0 *

all matching 
inputs generate 
the same CoT

0 0 1 0 0
0 1 1 0 0
1 0 1 0 1
0 0 1 0 1

ab
ab
ab
ab
. . . 28

correct 
output

“short” 
CoTinput



A General Lower Bound for CoT Length
Example: AND function

 * * 1 0 *

0 0 1 0 0
0 1 1 0 0
1 0 1 0 1
0 0 1 0 1

ab
ab
ab
ab
. . . 28

correct 
output

“short” 
CoTinput

FALSE
FALSE
FALSE
FALSE
. . .



A General Lower Bound for CoT Length
Example: PARITY function

 * * 1 0 *

0 0 1 0 0
0 1 1 0 0
1 0 1 0 1
0 0 1 0 1

ab
ab
ab
ab
. . . 28

correct 
output

“short” 
CoTinput

ODD
EVEN
ODD
EVEN
. . .



State Tracking

Corollary:

Any CoT for PARITY has length Ω(N).
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Empirical results of LLMs performing PARITY

Parity

We only include 
traces leading to the 
correct answer
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Empirical results of LLMs performing PARITY

Parity

We only include 
traces leading to the 
correct answer

The growth of CoT 
appears at least linear

29



ChatGPT4o
30



ChatGPT4o

See also:

for GPT4 zero shot: Dziri et al, NeurIPS 2023.

for: o3-mini: https://x.com/yuntiandeng/status/1889704768135905332

for DeepSeek R1: https://x.com/nouhadziri/status/1886423897567805835

actual: 278570135

incorrect

30
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Multiplication

Theorem:

Under a combinatorial conjecture, multiplying two N-bit numbers 
requires a CoT of length Ω(N).

What is the upper bound?

30



“naive” 
grade 
school 
algorithm:
Θ(N2) steps

30



Naive CoT requires Θ
(N2) steps.

Number of Bits

30

Θ(N2) 

Ω(N)



Naive CoT requires 
Θ(N2) steps.

CoT with Θ(N log N) 
steps exists.

Number of Bits

30

Θ(N log N) 

Θ(N2) 

Ω(N)
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Order Statistics

Theorem:

For MEDIAN, any CoT requires length 𝛺(N). This bound is attained.

31

8 45 82 71 5 28 65 -> 45

list of N integers median



Empirical results of LLMs performing MEDIAN

Order Statistics

We only include 
traces leading to the 
correct answer

the growth of CoT 
appears at least linear
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DAG reachability

Theorem:

Any CoT requires length 𝛺(|E|log|V|) in the worst case.

This bound is attained.

32

graph 
(DAG)

is there a 
path?
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Barriers on Hidden Reasoning

Pfau, Jacob, William Merrill, and Samuel R. Bowman. 
"Let's think dot by dot: Hidden computation in 
transformer language models." COLM 2024.

Background: Transformers can benefit from “dot-by-dot” CoTs

How far can such 
“hidden reasoning” 

go?

e=2.71828….

How powerful are such “dot-by-dot” CoTs?

How well can transformers hide their reasoning?
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Barriers on Hidden Reasoning

Theorem: 

“Dot-by-dot” CoTs for PARITY exist, but require super-polynomial length.

Hidden Reasoning is possible, 
but very expensive.

34
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Questions for Future Work

Q3: Superlinear lower bounds for CoTs

35

lower bounds in 
this work: Ω(N)

many tasks likely 
require more, 

e.g.  Ω(N2)
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